Centrosome cycle
   HOME

TheInfoList



OR:

Centrosome In cell biology, the centrosome (Latin centrum 'center' + Greek sōma 'body') (archaically cytocentre) is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle prog ...
s are the major
microtubule organizing center The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spind ...
s (MTOC) in mammalian cells. Failure of centrosome regulation can cause mistakes in chromosome segregation and is associated with
aneuploidy Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any ...
. A centrosome is composed of two orthogonal cylindrical protein assemblies, called centrioles, which are surrounded by a protein dense amorphous cloud of
pericentriolar material Pericentriolar material (PCM, sometimes also called pericent matrix) is a highly structured, dense mass of protein which makes up the part of the animal centrosome that surrounds the two centrioles. The PCM contains proteins responsible for microtub ...
(PCM). The PCM is essential for nucleation and organization of microtubules. The centrosome cycle is important to ensure that
daughter cell Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ar ...
s receive a centrosome after
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ar ...
. As the
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
progresses, the centrosome undergoes a series of morphological and functional changes. Initiation of the centrosome cycle occurs early in the cell cycle in order to have two centrosomes by the time mitosis occurs. Since the centrosome organizes the microtubules of a cell, it has to do with the formation of the mitotic spindle, polarity and, therefore, cell shape, as well as all other processes having to do with the mitotic spindle. The centriole is the inner core of the centrosome, and its conformation is typically somewhat like that of spokes on a wheel. It has a somewhat different conformation amount different organisms, but its overall structure is similar. Plants, on the other hand, do not typically have centrioles. The centrosome cycle consists of four phases that are synchronized to the cell cycle. These include: centrosome duplication during the
G1 phase The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes mRNA and proteins in preparation for subsequent steps lead ...
and S Phase, centrosome maturation in the
G2 phase G2 phase, Gap 2 phase, or Growth 2 phase, is the third subphase of interphase in the cell cycle directly preceding mitosis. It follows the successful completion of S phase, during which the cell’s DNA is replicated. G2 phase ends with the ...
, centrosome separation in the mitotic phase, and centrosome disorientation in the late mitotic phase—G1 phase.


Centriole synthesis

Centrioles are generated in new daughter cells through duplication of pre-existing
centrioles In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. Centrioles are found in most eukaryotic cells, but are not present in conifers (Pinophyta), flowering plants (angiosperms) and most fungi, and are ...
in the mother cells. Each daughter cell inherits two centrioles (one centrosome) surrounded by pericentriolar material as a result of cell division. However, the two centrioles are of different ages. This is because one centriole originates from the mother cell while the other is replicated from the mother centriole during the cell cycle. It is possible to distinguish between the two preexisting centrioles because the mother and daughter centriole differ in both shape and function. For example, the mother centriole can nucleate and organize microtubules, whereas the daughter centriole can only nucleate. First, procentrioles begin to form near each preexisting centriole as the cell moves from the
G1 phase The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes mRNA and proteins in preparation for subsequent steps lead ...
to the S phase. During S and G2 phases of the cell cycle, the procentrioles elongate until they reach the length of the older mother and daughter centrioles. At this point, the daughter centriole which takes on characteristics of a mother centriole. Once they reach full length, the new centriole and its mother centriole form a diplosome. A diplosome is a rigid complex formed by an orthogonal mother and newly formed centriole (now a daughter centriole) that aids in the processes of mitosis. As mitosis occurs, the distance between mother and daughter centriole increases until, congruent with
anaphase Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maxim ...
, the diplosome breaks down and each centriole is surrounded by its own pericentriolar material.


Centrosome duplication

Cell cycle regulation of centrosome duplication Centrosomes are only supposed to replicate once in each cell cycle and are therefore highly regulated. The centrosome cycle has been found to be regulated by multiple things, including reversible phosphorylation and proteolysis. It also undergoes specific processes in each step of cell division due to the heavy regulation, which is why the process is so efficient. Centrosome duplication is heavily regulated by cell cycle controls. This link between the cell cycle and the centrosome cycle is mediated by cyclin-dependent kinase 2 (Cdk2). Cdk2 is a protein kinase (an enzyme) known to regulate the cell cycle. There has been ample evidence that Cdk2 is necessary for both
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
and centrosome duplication, which are both key events in S phase. It has also been shown that Cdk2 complexes with both
cyclin A Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the ce ...
and
cyclin E Cyclin E is a member of the cyclin family. Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S phase of the cell cycle that determines initiation of DNA duplication. The Cyclin E/CDK2 complex phosphorylates p27K ...
and this complex is critical for centrosome duplication. Three Cdk2 substrates have been proposed to be responsible for regulation of centriole duplication: nucleophosmin (NPM/B23), CP110, and MPS1. Nucleophosmin is only found in unreplicated centrosomes and its phosphorylation by Cdk2/cyclin E removes NPM from the centrosomes, initiating procentriole formation. CP110 is an important centrosomal protein that is phosphorylated by both mitotic and interphase Cdk/cyclin complexes and is thought to influence centrosome duplication in the S phase. 9MPS1 is a protein kinase that is essential to the spindle assembly checkpoint, and it is thought to possibly remodel an SAS6-cored intermediate between severed mother and daughter centrioles into a pair of cartwheel protein complexes onto which procentrioles assemble.


Centrosome maturation

Centrosome maturation is defined as the increase or accumulation of γ-tubulin ring complexes and other PCM proteins at the centrosome. This increase in γ -tubulin gives the mature centrosome greater ability to nucleate microtubules. Phosphorylation plays a key regulatory role in centrosome maturation, and it is thought that
Polo-like kinase Polo-like kinases (Plks) are regulatory serine/threonin kinases of the cell cycle involved in mitotic entry, mitotic exit, spindle formation, cytokinesis, and meiosis.Barr, Francis A., Herman HW Silljé, and Erich A. Nigg. "Polo-like kinases and the ...
s (Plks) and
Aurora kinase Aurora kinases are serine/threonine kinases that are essential for cell proliferation. They are phosphotransferase enzymes that help the dividing cell dispense its genetic materials to its daughter cells. More specifically, Aurora kinases play ...
s are responsible for this phosphorylation. 1The phosphorylation of downstream targets of Plks and Aurora A lead to the recruitment of γ –tubulin and other proteins that form PCM around the centrioles. 3


Centrosome separation

In early mitosis, several motor proteins drive the separation of centrosomes. With the onset of prophase, the motor protein dynein provides the majority of the force required to pull the two centrosomes apart. The separation event actually occurs at the G2/M transition and happens in two steps. In the first step, the connection between the two parental centrioles is destroyed. In the second step, the centrosomes are separated via microtubule motor proteins.


Centrosome disorientation

Centrosome disorientation refers to the loss of orthogonality between the mother and daughter centrioles. Once disorientation occurs, the mature centriole begins to move toward the cleave furrow. It has been proposed that this movement is a key step in
abscission Abscission () is the shedding of various parts of an organism, such as a plant dropping a leaf, fruit, flower, or seed. In zoology, abscission is the intentional shedding of a body part, such as the shedding of a claw, husk, or the autotomy of a ...
, the terminal phase of cell division.


Centrosome reduction

Centrosome reduction is the gradual loss of centrosomal components that takes place after mitosis and during differentiation In cycling cells, after mitosis the centrosome has lost most of its
pericentriolar material Pericentriolar material (PCM, sometimes also called pericent matrix) is a highly structured, dense mass of protein which makes up the part of the animal centrosome that surrounds the two centrioles. The PCM contains proteins responsible for microtub ...
(PCM) and its microtubule nucleation capacity. In sperm, centriole structure is also changed in addition to the loss of PCM and its microtubule nucleation capacity.


Dysregulation of the centrosome cycle

Improper progression through the centrosome cycle can lead to incorrect numbers of centrosomes and aneuploidy, which could eventually lead to cancer. The role of centrosomes in tumor progression is unclear. The mis-expression of genes such as
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
,
BRCA1 Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a ...
, Mdm2, Aurora-A and survivin causes an increase in the amount of centrosomes present in a cell. However, it is not well understood how these genes influence the centrosome or how an increase in centrosomes influences tumor progression.


The Centrosome Cycle and Disease

Issues with the centrosome can have detrimental effects on the cell, which can lead to diseases in the organisms hosting the cells. Cancer is a heavily studied disease that has been found to have a relation to the cell's centrosome. Dwarfism, microcephaly, and ciliopathies have also recently been genetically linked to centrosome proteins. Centrosomes are believed to be related to cancer due to the fact that they contain tumor suppressor proteins and oncogenes. These proteins have been found to cause detrimental alterations in the centrosome of various tumor cells. There are two main categories of the centrosome alteration: structural and functional. The structural changes can lead to different shapes, sizes, numbers, positions, or composition, while the functional changes can lead to issues with the microtubules and mitotic spindles, therefore becoming detrimental in cell division. Researchers are hopeful that the targeting of carious centrosomal proteins may be a possible treatment to or prevention of cancer.


References

{{reflist Centrosome