Centered nonagonal number
   HOME

TheInfoList



OR:

A centered nonagonal number (or centered enneagonal number) is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for ''n'' layers is given by the formula :Nc(n) = \frac. Multiplying the (''n'' - 1)th triangular number by 9 and then adding 1 yields the ''n''th centered nonagonal number, but centered nonagonal numbers have an even simpler relation to triangular numbers: every third triangular number (the 1st, 4th, 7th, etc.) is also a centered nonagonal number. Thus, the first few centered nonagonal numbers are : 1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946. The list above includes the
perfect number In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. ...
s 28 and 496. All
even Even may refer to: General * Even (given name), a Norwegian male personal name * Even (surname) * Even (people), an ethnic group from Siberia and Russian Far East **Even language, a language spoken by the Evens * Odd and Even, a solitaire game wh ...
perfect numbers are triangular numbers whose index is an odd
Mersenne prime In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17 ...
. Since every Mersenne prime greater than 3 is congruent to 1 
modulo In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is ...
 3, it follows that every even perfect number greater than 6 is a centered nonagonal number. In 1850, Sir Frederick Pollock conjectured that every natural number is the sum of at most eleven centered nonagonal numbers, which has been neither proven nor disproven..


Congruence Relations

*All centered nonagonal numbers are congruent to 1 mod 3. **Therefore the sum of any 3 centered nonagonal numbers and the difference of any two centered nonagonal numbers are divisible by 3.


See also

* Nonagonal number


References

{{DEFAULTSORT:Centered Nonagonal Number Figurate numbers