HOME
*





496 (number)
496 (four hundred ndninety-six) is the natural number following 495 and preceding 497. In mathematics 496 is most notable for being a perfect number, and one of the earliest numbers to be recognized as such. As a perfect number, it is tied to the Mersenne prime 31, 25 − 1, with 24 (25 − 1) yielding 496. Also related to its being a perfect number, 496 is a harmonic divisor number, since the number of proper divisors of 496 divided by the sum of the reciprocals of its divisors, 1, 2, 4, 8, 16, 31, 62, 124, 248 and 496, (the harmonic mean), yields an integer, 5 in this case. A triangular number and a hexagonal number, 496 is also a centered nonagonal number. Being the 31st triangular number, 496 is the smallest counterexample to the hypothesis that one more than an even triangular prime-indexed number is a prime number. It is the largest happy number less than 500. There is no solution to the equation φ(''x'') = 496, making 496 a nontotient. ''E''8 has real dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nontotient
In number theory, a nontotient is a positive integer ''n'' which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(''x'') = ''n'' has no solution ''x''. In other words, ''n'' is a nontotient if there is no integer ''x'' that has exactly ''n'' coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions ''x'' = 1 and ''x'' = 2. The first few even nontotients are : 14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, ... Least ''k'' such that the totient of ''k'' is ''n'' are (0 if no such ''k'' exists) :1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heterotic String
In string theory, a heterotic string is a closed string (or loop) which is a hybrid ('heterotic') of a superstring and a bosonic string. There are two kinds of heterotic string, the heterotic SO(32) and the heterotic E8 × E8, abbreviated to HO and HE. Heterotic string theory was first developed in 1985 by David Gross, Jeffrey Harvey, Emil Martinec, and Ryan Rohm (the so-called "Princeton string quartet"), in one of the key papers that fueled the first superstring revolution. Overview In string theory, the left-moving and the right-moving excitations are completely decoupled, and it is possible to construct a string theory whose left-moving (counter-clockwise) excitations are treated as a bosonic string propagating in ''D'' = 26 dimensions, while the right-moving (clockwise) excitations are treated as a superstring in ''D'' = 10 dimensions. The mismatched 16 dimensions must be compactified on an even, self-dual lattice (a discrete subgroup of a line ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First Superstring Revolution
The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics. 1943–1959: S-matrix theory String theory represents an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 following John Archibald Wheeler's 1937 introduction of the S-matrix. Many prominent theorists picked up and advocated S-matrix theory, starting in the late 1950s and throughout the 1960s. The field became marginalized and discarded in the mid 1970s and disappeared in the 1980s. Physicists neglected it because some of its mathematical methods were alien, and because quantum chromodynamics supplanted it as an experimentally better-qualified approach to the strong interactions. The theory presented a radical rethinking ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SO(32)
In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by Function composition, composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrix, orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose invertible matrix, inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact group, compact. The orthogonal group in dimension has two connected component (topology), connected components. The one that contains the identity element is a normal subgroup, called the special orthogonal group, and denoted . It consists of all orthogonal matrices of determinant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type I String Theory
In theoretical physics, type I string theory is one of five consistent supersymmetric string theories in ten dimensions. It is the only one whose strings are unoriented (both orientations of a string are equivalent) and the only one which contains not only closed strings, but also open strings. Overview The classic 1976 work of Ferdinando Gliozzi, Joël Scherk and David Olive paved the way to a systematic understanding of the rules behind string spectra in cases where only closed strings are present via modular invariance. It did not lead to similar progress for models with open strings, despite the fact that the original discussion was based on the type I string theory. As first proposed by Augusto Sagnotti in 1988, the type I string theory can be obtained as an orientifold of type IIB string theory, with 32 half-D9-branes added in the vacuum to cancel various anomalies giving it a gauge group of SO(32) via Chan-Paton factors. At low energies, type I string theory is desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Group
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the '' symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimension
In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A Surface (mathematics), surface, such as the Boundary (mathematics), boundary of a Cylinder (geometry), cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the Euclidean plane, plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John H
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died c. AD 30), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (lived c. AD 30), one of the twelve apostles of Jesus * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * Pope Jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Michael Green (physicist)
Michael Boris Green (born 22 May 1946) is a British physicist and a pioneer of string theory. He is Professor of Theoretical Physics in the School of Physics and Astronomy at Queen Mary University of London, emeritus professor in the Department of Applied Mathematics and Theoretical Physics and a Fellow of Clare Hall, Cambridge. He was Lucasian Professor of Mathematics from 2009 to 2015. Education and background Green was born the son of Genia Green and Absalom Green. He attended William Ellis School in London and Churchill College, Cambridge where he graduated with a Bachelor of Arts with first class honours in theoretical physics (1967) and a PhD in elementary particle theory (1970). Career Following his PhD, Green did postdoctoral research at Princeton University (1970–72), Cambridge and the University of Oxford. Between 1978 and 1993 he was a Lecturer and Professor at Queen Mary College, University of London, and in July 1993 he was appointed John Humphrey Plummer Profes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superstring Theory
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories are regarded as different limits of a single theory tentatively called M-theory. Background The deepest problem in theoretical physics is harmonizing the theory of general relativity, which describes gravitation and applies to large-scale structures (stars, galaxies, super clusters), with quantum mechanics, which describes the other three fundamental forces acting on the atomic scale. The development of a quantum field theory of a force invariably results in infinite possibilities. Physicists developed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Dimension
In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex dimension of an algebraic variety, algebraic variety. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on a Cartesian product of the form \mathbb^d for some d, and the complex dimension is the exponent d in this product. Because \mathbb can in turn be modeled by \mathbb^2, a space with complex dimension d will have real dimension 2d. That is, a smooth manifold of complex dimension d has real dimension 2d; and a complex algebraic variety of complex dimension d, away from any Singular point of an algebraic variety, singular point, will also be a smooth manifold of real dimension 2d. However, for a real algebraic variety (that is a variety defined by equations with real coefficients), its dimension of an algebraic variety, dimension refers commonly to its complex dimension, and its Dimension of an algebraic var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]