Cell disruption
   HOME

TheInfoList



OR:

Cell disruption is a method or process for releasing biological
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
from inside a
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
.


Methods

The production of biologically interesting molecules using
cloning Cloning is the process of producing individual organisms with identical or virtually identical DNA, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction. In the field of biotechnology, c ...
and culturing methods allows the study and manufacture of relevant molecules. Except for excreted molecules, cells producing molecules of interest must be disrupted. This page discusses various methods. Another method of disruption is called cell unroofing.


Bead method

A common laboratory-scale mechanical method for cell disruption uses glass, ceramic or steel beads, 0.1 to 2 mm in diameter, mixed with a sample suspended in aqueous media. First developed by Tim Hopkins in the late 1970s, the sample and bead mix is subjected to high level agitation by stirring or shaking. Beads collide with the cellular sample, cracking open the cell to release intercellular components. Unlike some other methods, mechanical shear is moderate during homogenization resulting in excellent membrane or subcellular preparations. The method, often called "beadbeating", works well for all types of cellular material - from spores to animal and plant tissues. It is the most widely used method of yeast lysis, and can yield breakage of well over 50% (up to 95%). It has the advantage over other mechanical cell disruption methods of being able to disrupt very small sample sizes, process many samples at a time with no cross-contamination concerns, and does not release potentially harmful aerosols in the process. In the simplest example of the method, an equal volume of beads are added to a cell or tissue suspension in a test tube and the sample is vigorously mixed on a common laboratory vortex mixer. While processing times are slow, taking 3-10 times longer than that in specialty shaking machines, it works well for easily disrupted cells and is inexpensive. Successful beadbeating is dependent not only on design features of the shaking machine (which take into consideration shaking oscillations per minute, shaking throw or distance, shaking orientation and vial orientation), but also the selection of correct bead size (0.1–6 mm diameter), bead composition (glass, ceramic, steel) and bead load in the vial. In most laboratories, beadbeating is done in batch sizes of one to twenty-four sealed, plastic vials or centrifuge tubes. The sample and tiny beads are agitated at about 2000 oscillations per minute in specially designed reciprocating shakers driven by high power electric motors. Cell disruption is complete in 1–3 minutes of shaking. Significantly faster rates of cell disruption are achieved with a beadbeater variation called SoniBeast. Differing from conventional machines, it agitates the beads using a vortex motion at 20,000 oscl/min. Larger beadbeater machines that hold deep-well microtiter plates also shorten process times, as do Bead Dispensers designed to quickly load beads into multiple vials or microplates. Pre-loaded vials and microplates are also available. All high energy beadbeating machines warm the sample about 10 degrees/minute. This is due to frictional collisions of the beads during homogenization. Cooling of the sample during or after beadbeating may be necessary to prevent damage to heat-sensitive proteins such as enzymes. Sample warming can be controlled by beadbeating for short time intervals with cooling on ice between each interval, by processing vials in pre-chilled aluminum vial holders or by circulating gaseous coolant through the machine during beadbeating. A different beadbeater configuration, suitable for larger sample volumes, uses a rotating fluorocarbon rotor inside a 15, 50 or 200 ml chamber to agitate the beads. In this configuration, the chamber can be surrounded by a static cooling jacket. Using this same rotor/chamber configuration, large commercial machines are available to process many liters of
cell suspension A cell suspension or suspension culture is a type of cell culture in which single cells or small aggregates of cells are allowed to function and multiply in an agitated growth medium, thus forming a suspension. Suspension culture is one of the two ...
. Currently, these machines are limited to processing monocellular organisms such as yeast, algae and bacteria.


Cryopulverization

Samples with a tough extracellular matrix, such as animal connective tissue, some tumor biopsy samples, venous tissue, cartilage, seeds, etc., are reduced to a fine powder by impact pulverization at liquid nitrogen temperatures. This technique, known as cryopulverization, is based on the fact that biological samples containing a significant fraction of water become brittle at extremely cold temperatures. This technique was first described by Smucker and Pfister in 1975, who referred to the technique as cryo-impacting. The authors demonstrated cells are effectively broken by this method, confirming by phase and electron microscopy that breakage planes cross cell walls and cytoplasmic membranes. The technique can be done by using a mortar and pestle cooled to liquid nitrogen temperatures, but use of this classic apparatus is laborious and sample loss is often a concern. Specialised stainless steel pulverizers generically known as Tissue Pulverizers are also available for this purpose. They require less manual effort, give good sample recovery and are easy to clean between samples. Advantages of this technique are higher yields of proteins and nucleic acids from small, hard tissue samples - especially when used as a preliminary step to mechanical or chemical/solvent cell disruption methods mentioned above.


High Pressure Cell Disruption

Since the 1940s high pressure has been used as a method of cell disruption, most notably by the French Pressure Cell Press, or French Press for short. This method was developed by Charles Stacy French and utilises high pressure to force cells through a narrow orifice, causing the cells to lyse due to the shear forces experienced across the pressure differential. While French Presses have become a staple item in many microbiology laboratories, their production has been largely discontinued, leading to a resurgence in alternate applications of similar technology. Modern physical cell disruptors typically operate via either pneumatic or hydraulic pressure. Although pneumatic machines are typically lower cost, their performance can be unreliable due to variations in the processing pressure throughout the stroke of the air pump. It is generally considered that hydraulic machines offer superior lysing ability, especially when processing harder to break samples such as yeast or
Gram-positive bacteria In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. Gram-positive bac ...
, due to their ability to maintain constant pressure throughout the piston stroke. As the French Press, which is operated by hydraulic pressure, is capable of over 90% lysis of most commonly used cell types it is often taken as the gold standard in lysis performance and modern machines are often compared against it not only in terms of lysis efficiency but also in terms of safety and ease of use. Some manufacturers are also trying to improve on the traditional design by altering properties within these machines other than the pressure driving the sample through the orifice. One such example is Constant Systems, who have recently shown that their Cell Disruptors not only match the performance of a traditional French Press, but also that they are striving towards attaining the same results at a much lower power. Pressure Cycling Technology ("PCT"). PCT is a patented, enabling technology platform that uses alternating cycles of hydrostatic pressure between ambient and ultra-high levels (up to 90,000 psi) to safely, conveniently and reproducibly control the actions of molecules in biological samples, e.g., the rupture (lysis) of cells and tissues from human, animal, plant, and microbial sources, and the inactivation of pathogens. PCT-enhanced systems (instruments and consumables) address some challenging problems inherent in biological sample preparation. PCT advantages include: (a) extraction and recovery of more membrane proteins, (b) enhanced protein digestion, (c) differential lysis in a mixed sample base, (d) pathogen inactivation, (e) increased DNA detection, and (f) exquisite sample preparation process control. The Microfluidizer method used for cell disruption strongly influences the physicochemical properties of the lysed cell suspension, such as particle size, viscosity, protein yield and enzyme activity. In recent years the Microfluidizer method has gained popularity in cell disruption due to its ease of use and efficiency at disrupting many different kinds of cells. The Microfluidizer technology was licensed from a company called Arthur D. Little and was first developed and utilized in the 1980s, initially starting as a tool for liposome creation. It has since been used in other applications such as cell disruption nanoemulsions, and solid particle size reduction, among others. By using microchannels with fixed geometry, and an intensifier pump, high
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
s are generated that rupture the cells. This method of cell lysis can yield breakage of over 90% of E. coli cells. Many proteins are extremely temperature-sensitive, and in many cases can start to denature at temperatures of only 4 degrees celsius. Within the microchannels, temperatures exceed 4 degrees celsius, but the machine is designed to cool quickly so that the time the cells are exposed to elevated temperatures is extremely short (
residence time The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body). The residence time of a set of parcels is quantified in terms of the frequency distribu ...
25 ms-40 ms). Because of this effective temperature control, the Microfluidizer yields higher levels of active proteins and enzymes than other mechanical methods when the proteins are temperature-sensitive. Viscosity changes are also often observed when disrupting cells. If the cell suspension viscosity is high, it can make downstream handling—such as filtration and accurate pipetting—quite difficult. The viscosity changes observed with a Microfluidizer are relatively low, and decreases with further additional passes through the machine. In contrast to other mechanical disruption methods the Microfluidizer breaks the cell membranes efficiently but gently, resulting in relatively large cell wall fragments (450 nm), and thus making it easier to separate the cell contents. This can lead to shorter filtration times and better centrifugation separation. Microfluidizer technology scales from one milliliter to thousands of liters.


Nitrogen decompression

For nitrogen decompression, large quantities of nitrogen are first dissolved in the cell under high pressure within a suitable
pressure vessel A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure. Construction methods and materials may be chosen to suit the pressure application, and will depend on the size o ...
. Then, when the gas pressure is suddenly released, the nitrogen comes out of the solution as expanding bubbles that stretch the membranes of each cell until they rupture and release the contents of the cell. Nitrogen decompression is more protective of
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s and
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' th ...
s than ultrasonic and mechanical homogenizing methods and compares favorably to the controlled disruptive action obtained in a PTFE and glass mortar and pestle homogenizer. While other disruptive methods depend upon friction or a mechanical shearing action that generate heat, the nitrogen decompression procedure is accompanied by an adiabatic expansion that cools the sample instead of heating it. The blanket of inert nitrogen gas that saturates the cell suspension and the homogenate offers protection against
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
of cell components. Although other gases:
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
,
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and ha ...
,
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simpl ...
and compressed air have been used in this technique,
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
is preferred because of its non-reactive nature and because it does not alter the pH of the suspending medium. In addition, nitrogen is preferred because it is generally available at low cost and at pressures suitable for this procedure. Once released,
subcellular The cell is the basic structural and functional unit of life forms. Every cell consists of a cytoplasm enclosed within a membrane, and contains many biomolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients an ...
substances are not exposed to continued attrition that might denature the sample or produce unwanted damage. There is no need to watch for a peak between enzyme activity and percent disruption. Since nitrogen bubbles are generated within each cell, the same disruptive force is applied uniformly throughout the sample, thus ensuring unusual uniformity in the product. Cell-free homogenates can be produced. The technique is used to homogenize cells and tissues, release intact
organelles In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
, prepare
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
s, release labile
biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
s, and produce uniform and repeatable homogenates without subjecting the sample to extreme chemical or physical stress. The method is particularly well suited for treating
mammalian Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fu ...
and other membrane-bound cells. It has also been used successfully for treating
plant cell Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae. Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capab ...
s, for releasing virus from fertilized eggs and for treating fragile
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
. It is not recommended for untreated bacterial cells.
Yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constit ...
,
fungus A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
,
spores In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, ...
and other materials with tough cell walls do not respond well to this method.


See also

*
Ultrasonic homogenizer A sonicator at the Weizmann Institute of Science during sonicationSonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, microalgae and seawe ...
* Sonication *
Homogenization (chemistry) Homogenization or homogenisation is any of several processes used to make a mixture of two mutually non-soluble liquids the same throughout. This is achieved by turning one of the liquids into a state consisting of extremely small particles dist ...
* Homogenizer


References

{{DEFAULTSORT:Cell Disruption Cell biology