Blue baby syndrome
   HOME

TheInfoList



OR:

Blue baby syndrome can refer to conditions that cause cyanosis, or blueness of the skin, in babies as a result of low oxygen levels in the blood. This term has traditionally been applied to cyanosis as a result of: #
Cyanotic heart disease A cyanotic heart defect is any congenital heart defect (CHD) that occurs due to deoxygenated blood bypassing the lungs and entering the systemic circulation, or a mixture of oxygenated and unoxygenated blood entering the systemic circulation. It ...
, which is a category of
congenital heart defect A congenital heart defect (CHD), also known as a congenital heart anomaly and congenital heart disease, is a defect in the structure of the heart or great vessels that is present at birth. A congenital heart defect is classed as a cardiovascul ...
that results in low levels of oxygen in the blood. This can be caused by either reduced blood flow to the lungs or mixing of oxygenated and deoxygenated blood. # Methemoglobinemia, which is a disease defined by high levels of methemoglobin in the blood. Increased levels of
methemoglobin Methemoglobin (British: methaemoglobin) (pronounced "met-hemoglobin") is a hemoglobin ''in the form of metalloprotein'', in which the iron in the heme group is in the Fe3+ (ferric) state, not the Fe2+ (ferrous) of normal hemoglobin. Sometimes, it i ...
prevent oxygen from being released into the tissues and result in hypoxemia. Although these are the most common causes of cyanosis, there are other potential factors that can cause a blue tint to a baby's skin or mucous membranes. These factors include hypoventilation, perfusion or ventilation differences in the lungs, and poor cardiac output of oxygenated blood, among others. The blue baby syndrome or cyanosis occurs when absolute amount of deoxygenated hemoglobin >3g/dL which is typically reflected with an O2 saturation of <85%. Both of these conditions cause cyanosis, or a bluish discoloration of skin or mucous membranes. Normally, oxygenated blood appears red and deoxygenated blood has more of a blue appearance. In babies with low levels of oxygen or mixing of oxygenated and deoxygenated blood, the blood can have a blue or purple color, causing cyanosis.


Signs and symptoms

The main sign of blue baby syndrome is cyanosis. Depending on the underlying cause of the cyanosis, additional symptoms may be: * Rapid heartbeat * Rapid respiratory rate * Failure to thrive * Shortness of breath * Nasal flaring * Lethargy * Seizures


Causes

Blue baby syndrome has been attributed to cyanotic congenital heart diseases and methemoglobinemia, however there are additional causes that could result in a baby becoming cyanotic, such as: * Decreased blood perfusion * Pulmonary/lung disorders (ex: Pulmonary hypertension, cystic fibrosis) * Disordered control of breathing (ex: Cyanotic breath-holding spells, seizures) * Airway obstruction * Respiratory distress syndrome


Mechanism


Cyanotic heart disease

Specific types of congenital heart defects that cause blood to pass directly from the right side of the heart to the left side result in cyanosis. In these defects, some of the blood that is pumped to the body has not been oxygenated by the lungs and therefore will appear more blue. Infants with these types of heart defects may have a constant bluish tint to their skin, or they may have temporary episodes of cyanosis. The degree of cyanosis is dependent on how much deoxygenated blood is mixed with oxygenated blood before being pumped to the body. Cardiac conditions in which there is decreased blood flow to the lungs such as, tetralogy of Fallot or pulmonary valve atresia, result in less blood becoming oxygenated. There are also cardiac conditions such as transposition of the great arteries or truncus arteriosus, that results in an overall increase in blood flow to the lungs but with limited flow of the oxygenated blood to the rest of the body. Conditions in which there is poor blood flow to the systemic circulation, such as coarctation of the aorta suggests that the body does not receive the oxygenated blood it requires with resultant cyanosis. The five most common cyanotic heart defects that may result in Blue Baby Syndrome include the following:


Methemoglobinemia

Methemoglobinemia can be acquired or congenital. It occurs when the iron in hemoglobin is oxidized from Fe2+ to Fe3+, leading to poor binding of oxygen. Additionally, the oxygen that is already bound is held more tightly to the hemoglobin due to a higher affinity, resulting in less oxygen delivery. A methemoglobin level >1.5g/dL causes cyanosis.The most common congenital cause is a deficiency in the enzyme cytochrome b5 reductase which reduces methemoglobin in the blood. However, in infants the most common cause of methemoglobinemia is acquired through the ingestion of nitrates through
well water A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. ...
or foods. Infants younger than 4 months are at greater risk given that they drink more water per body weight, they have a lower NADH- cytochrome b5 reductase activity, and they have a higher level of fetal hemoglobin which converts more easily to methemoglobin. Additionally, infants are at an increased risk after an episode of gastroenteritis due to the production of nitrites by bacteria. The sources of nitrate can include
fertilizer A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
s used in agricultural lands, waste dumps or
pit latrine A pit latrine, also known as pit toilet, is a type of toilet that collects human feces in a hole in the ground. Urine and feces enter the pit through a drop hole in the floor, which might be connected to a toilet seat or squatting pan for use ...
s. For example, nitrate levels are subject to monitoring to comply with drinking water quality standards in the United States and other countries. The link between blue baby syndrome and nitrates in drinking water is widely accepted, but as of 2006 some studies indicated that other contaminants or dietary nitrate sources, might also play a role in the syndrome.


Diagnosis

When diagnosing blue baby syndrome, it is important to perform a thorough history and physical exam. When obtaining the history, it is important to determine the timing of symptoms and to ask about risk factors/exposures, such as prenatal history or access to well-water. On physical exam it is important to visualize where the cyanosis is present to differentiate between peripheral and central cyanosis. Central cyanosis is typically visible as a blueish discoloration over the entire body and mucous membranes. In contrast, peripheral cyanosis typically has a blueish discoloration over the extremities. Cyanosis can be noted in babies around the lips, tongue, and sublingual area, where the skin is thinnest. In addition, it is important to observe the infant for signs of respiratory distress, visualized as nasal flaring, subcostal retractions, etc. Examination should include a respiratory and cardiac assessment. One of the key tools in diagnosing is a pulse oximeter to determine oxygen saturation. While severe cyanosis can be easily noticed, an oxygen saturation as low as 80% causes only mild clinical cyanosis that is difficult to see. Additionally an arterial blood gas is useful, for example in the case of methemoglobinemia the PO2 can be expected to be normal even with a low oxygen saturation. Additional work up includes a complete blood count, blood glucose, blood culture, chest x-ray, and an echocardiography. Babies with cyanosis due to congenital heart disease usually present with symptoms hours to days after birth. In addition to cyanosis, they often show signs of
tachypnea Tachypnea, also spelt tachypnoea, is a respiratory rate greater than normal, resulting in abnormally rapid and shallow breathing. In adult humans at rest, any respiratory rate of 1220 per minute is considered clinically normal, with tachypnea b ...
(fast breathing), a heart murmur, and decreased peripheral pulses. If congenital heart disease is suspected in a newborn, doctors will likely perform several tests to evaluate the heart, including a chest x-ray,
echocardiogram An echocardiography, echocardiogram, cardiac echo or simply an echo, is an ultrasound of the heart. It is a type of medical imaging of the heart, using standard ultrasound or Doppler ultrasound. Echocardiography has become routinely used in th ...
, and electrocardiogram. In tetralogy of Fallot, episodes in which infants become cyanotic are called tet spells, typically occurring during feeding or crying. When older, children may squat to feel relief since this increases the systemic vascular resistance causing more blood to go towards the lungs, resulting in increased oxygenation. Babies with cyanosis due to methemoglobinemia also usually present with cyanosis in the neonatal period, but pulse oximetry may be falsely elevated and does not always reveal low blood oxygen saturation. . A
co-oximeter A CO-oximeter is a device that measures the oxygen carrying state of hemoglobin in a blood specimen, including oxygen-carrying hemoglobin (O2Hb), non-oxygen-carrying but normal hemoglobin (HHb) (formerly, but incorrectly, referred to as 'reduced' ...
can be used to detect levels of methemoglobin in the blood if methemoglobinemia is suspected, by seeing the difference between oxygen saturation on an arterial blood gas and the measurement on a co-oximeter. Additionally, a direct methemoglobin level can be obtained.


Prevention/Screening

As of 22 May 2007, the United States Environmental Protection Agency has established a maximum contaminant level of 10 mg/L for nitrate and 1 mg/L for nitrite due to the potential harmful effects in infants. A screening tool has been developed to screen for critical cardiac defects, which refers to cardiac lesions that require surgery or intervention in the 1st year of life. Screening for critical congenital heart defects should be done on all newborns after 24hours or shortly before discharge. Oxygen saturation is measured in the right hand and either foot. A screening is considered positive if: * Oxygen saturation <90% in either extremity, * Oxygen saturation 90-94% in both extremities on 3 measurements separated by an hour each, * Oxygen saturation difference >3% between both extremities on 3 measurements separated by an hour each.


Management

Treatment for blue baby syndrome will depend on the underlying cause. When evaluating a patient for cyanosis or respiratory distress, vital signs should be monitored, especially the patient's heart rate and oxygen saturation. It is beneficial to have vascular access established. In newborns, the pulse oximeter is typically placed on the right hand to determine pre-ductal oxygenation, referring to oxygenation before the ductus arteriosus (connection between aorta and pulmonary artery). This gives the oxygenation level the heart and brain receive. Traditionally, supplemental oxygen is given in an escalating manner beginning with free-flowing oxygen, progressing to positive pressure ventilation or continuous positive airway pressure, and ending with mechanical intubation. The goal oxygen saturation is between 85 and 95%. If an infant requires supplemental oxygen for a prolonged time it should be heated and humidified to avoid heat loss.


Cyanotic heart disease

Some babies born with cyanotic heart disease are treated with
prostaglandin E1 Prostaglandin E1 (PGE1), also known as alprostadil, is a naturally occurring prostaglandin which is used as a medication. In infants with congenital heart defects, it is delivered by intravenous infusion, slow injection into a vein to open the d ...
after birth to keep the
ductus arteriosus The ''ductus arteriosus'', also called the ''ductus Botalli'', named after the Italian physiologist Leonardo Botallo, is a blood vessel in the developing fetus connecting the trunk of the pulmonary artery to the proximal descending aorta. It a ...
open and allow for more oxygenated blood to be pumped to the body. Many also receive oxygen therapy to increase the percentage of oxygen in the blood. Most of these babies will require surgery during infancy to correct their structural heart defect.


Severe methemoglobinemia

The first-line treatment for severe methemoglobinemia is methylene blue, a medication that will reduce methemoglobin in the blood. This is possible because methylene blue oxidizes NADPH, which in turn can convert methemoglobin back to hemoglobin.


Epidemiology

Out of all the babies born with congenital heart defects, about 25% have cyanosis as a result. Tetralogy of Fallot is the most common cyanotic cardiac heart defect. Methemoglobinemia is considered to be rare, with acquired methemoglobinemia encountered more than the congenital form.


Outcomes

In the case of cyanotic causing heart defects, about 75% of infants survive to 1 year of age and 69% survive to 18 years of age. These individuals have an increased risk of developmental delay, heart failure, or heart rhythm disorders. Methemoglobinemia responds well to treatment, its prognosis is associated with the level of methemoglobinemia and the degree of end organ damage it can cause. Death can occur when levels reach 70%.


History

The first successful operation to treat blue baby syndrome caused by Tetralogy of Fallot occurred at Johns Hopkins University in 1944. Through a collaboration between pediatric cardiologist
Helen Taussig Helen Brooke Taussig (May 24, 1898 – May 20, 1986) was an American cardiologist, working in Baltimore and Boston, who founded the field of pediatric cardiology. She is credited with developing the concept for a procedure that would extend the l ...
, surgeon
Alfred Blalock Alfred Blalock (April 5, 1899 – September 15, 1964) was an American surgeon most noted for his work on the medical condition of shock as well as Tetralogy of Fallot— commonly known as Blue baby syndrome. He created, with assistance from h ...
, and surgical technician
Vivien Thomas Vivien Theodore Thomas (August 29, 1910 – November 26, 1985) was an American laboratory supervisor who developed a procedure used to treat blue baby syndrome (now known as cyanotic heart disease) in the 1940s. He was the assistant to surgeon ...
, the Blalock-Thomas-Taussig shunt was created. Dr. Taussig had recognized that children with Tetralogy of Fallot who also had a
patent ductus arteriosus ''Patent ductus arteriosus'' (PDA) is a medical condition in which the ''ductus arteriosus'' fails to close after birth: this allows a portion of oxygenated blood from the left heart to flow back to the lungs by flowing from the aorta, which has ...
(PDA) typically lived longer, so the trio tried to create the same effect as a PDA by joining the subclavian artery to the pulmonary artery, relieving the child's cyanosis. The operation was published in the Journal of the American Medical Association in 1945 and impacted management of blue babies around the world. Anna was the name of the dog who was the first survivor of the surgery, considered an experimental procedure at the time. Anna survived the first pulmonary bypass after having been operated on twice. The second operation was required to replace the original stitches with flexible ones. After their success with Anna, Blalock and Thomas had the courage to perform the very first
open heart surgery Cardiac surgery, or cardiovascular surgery, is surgery on the heart or great vessels performed by cardiac surgeons. It is often used to treat complications of ischemic heart disease (for example, with coronary artery bypass grafting); to c ...
on Eileen Saxon in 1944. In 1950, Anna's story was made into a movie, and the film has been shown to various schools and other groups.


References

{{DEFAULTSORT:Blue Baby Syndrome Neonatology Syndromes affecting the heart