Biliverdin reductase
   HOME

TheInfoList



OR:

Biliverdin reductase (BVR) is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
() found in all tissues under normal conditions, but especially in reticulo-macrophages of the liver and spleen. BVR facilitates the conversion of
biliverdin Biliverdin ( latin for green bile) is a green tetrapyrrolic bile pigment, and is a product of heme catabolism.Boron W, Boulpaep E. Medical Physiology: a cellular and molecular approach, 2005. 984-986. Elsevier Saunders, United States. It is the ...
to
bilirubin Bilirubin (BR) ( Latin for "red bile") is a red-orange compound that occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the body's clearance of waste products that arise from t ...
via the reduction of a double-bond between the second and third
pyrrole Pyrrole is a heterocyclic aromatic organic compound, a five-membered ring with the formula C4 H4 NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., ''N''-meth ...
ring into a single-bond. There are two isozymes, in humans, each encoded by its own gene,
biliverdin reductase A Biliverdin reductase A is a protein that in humans is encoded by the BLVRA gene. Function The protein encoded by this gene belongs to the biliverdin reductase family, members of which catalyze the conversion of biliverdin to bilirubin in the ...
(BLVRA) and biliverdin reductase B (BLVRB).


Mechanism of catalysis

BVR acts on
biliverdin Biliverdin ( latin for green bile) is a green tetrapyrrolic bile pigment, and is a product of heme catabolism.Boron W, Boulpaep E. Medical Physiology: a cellular and molecular approach, 2005. 984-986. Elsevier Saunders, United States. It is the ...
by reducing its double-bond between the pyrrole rings into a single-bond. It accomplishes this using NADPH + H+ as an electron donor, forming
bilirubin Bilirubin (BR) ( Latin for "red bile") is a red-orange compound that occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the body's clearance of waste products that arise from t ...
and NADP+ as products. BVR catalyzes this reaction through an overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 as key residues. This binding site attaches to biliverdin, and causes its dissociation from heme oxygenase (HO) (which catalyzes reaction of ferric heme -->
biliverdin Biliverdin ( latin for green bile) is a green tetrapyrrolic bile pigment, and is a product of heme catabolism.Boron W, Boulpaep E. Medical Physiology: a cellular and molecular approach, 2005. 984-986. Elsevier Saunders, United States. It is the ...
), causing the subsequent reduction to bilirubin.


Structure

BVR is composed of two closely packed domains, between 247-415 amino acids long and containing a Rossmann fold. BVR has also been determined to be a zinc-binding protein with each enzyme protein having one strong-binding zinc atom.; The C-terminal half of BVR contains the
catalytic domain In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate (binding site) ...
, which adopts a
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such a ...
containing a six-stranded beta-sheet that is flanked on one face by several alpha-helices. This domain contains the catalytic
active site In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate ( binding site) ...
, which reduces the gamma-methene bridge of the open tetrapyrrole, biliverdin IX alpha, to
bilirubin Bilirubin (BR) ( Latin for "red bile") is a red-orange compound that occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the body's clearance of waste products that arise from t ...
with the concomitant
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
of a NADH or NADPH cofactor.


Function

BVR works with the biliverdin/bilirubin redox cycle. It converts biliverdin to bilirubin (a strong antioxidant), which is then converted back into biliverdin through the actions of
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS). This cycle allows for the neutralization of ROS, and the reuse of biliverdin products. Biliverdin also is replenished in the cycle with its formation from heme units through
heme oxygenase Heme oxygenase, or haem oxygenase, (HMOX, commonly abbreviated as HO) is an enzyme that catalyzes the degradation of heme to produce biliverdin, ferrous ion, and carbon monoxide. There are many heme degrading enzymes in nature. In general, onl ...
(HO) localized from the endoplasmic reticulum. Bilirubin, being one of the last products of
heme Heme, or haem (pronounced / hi:m/ ), is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver. In biochemical terms, heme is a coordination complex "consis ...
degradation in the liver, is further processed and excreted in bile after conjugation with
glucuronic acid Glucuronic acid (from Greek γλεῦκος "''wine, must''" and οὖρον "''urine''") is a uronic acid that was first isolated from urine (hence the name). It is found in many gums such as gum arabic (c. 18%), xanthan, and kombucha tea ...
. In this way, BVR is essential in many mammals for the disposal of heme catabolites – especially in the fetus where the placental membranes are bilirubin-permeable but not biliverdin-permeable - aiding in the removal of potentially toxic protein build-up. BVR has also more recently been recognized as a regulator of
glucose metabolism Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms. Carbohydrates are central to many essential metabolic pathways. P ...
and in cell growth and apoptosis control, due to its dual-specificity kinase character. This control over glucose metabolism indicates that BVR may play a role in pathogenesis of multiple metabolic diseases - the notable one being
diabetes Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ...
, by control of the upstream activator of insulin growth factor-1 (IGF-1) and mitogen-activated protein kinase (MAPK) signaling pathway.


Disease relevance

BVR acts as a means to regenerate bilirubin in a repeating redox cycle without significantly modifying the concentration of available bilirubin. With these levels maintained, it appears that BVR represents a new strategy for the treatment of
multiple sclerosis Multiple (cerebral) sclerosis (MS), also known as encephalomyelitis disseminata or disseminated sclerosis, is the most common demyelinating disease, in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This ...
and other types of oxidative stress-mediated diseases. The mechanism is due to the amplification of the potent antioxidant actions of bilirubin, as this can ameliorate free radical-mediated diseases. Studies have shown that the BVR redox cycle is essential in providing physiological cytoprotection. Genetic knock-outs and reduced BVR levels have demonstrated increased formation of ROS, and results in augmented cell death. Cells that experienced a 90% reduction in BVR experienced three times normal ROS levels. Through this protective and amplifying cycle, BVR allows low concentrations of bilirubin to overcome 10,000-fold higher concentrations of ROS.


References


External links

* {{InterPro content, IPR015249 Protein domains EC 1.3.1