Basic concepts of quantum mechanics
   HOME

TheInfoList



OR:

Quantum mechanics is the study of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
and its interactions with
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
on the scale of
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
ic and
subatomic particles In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a prot ...
. By contrast,
classical physics Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the ...
explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large ( macro) and the small (
micro Micro may refer to: Measurement * micro- (μ), a metric prefix denoting a factor of 10−6 Places * Micro, North Carolina, town in U.S. People * DJ Micro, (born Michael Marsicano) an American trance DJ and producer *Chii Tomiya (都宮 ちい ...
) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to two major revolutions in physics that created a shift in the original
scientific paradigm In science and philosophy, a paradigm () is a distinct set of concepts or thought patterns, including theories, research methods, postulates, and standards for what constitute legitimate contributions to a field. Etymology ''Paradigm'' comes ...
: the ''
theory of relativity The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in ...
'' and the development of ''quantum mechanics''. This article describes how physicists discovered the limitations of classical physics and developed the main concepts of the quantum theory that replaced it in the early decades of the 20th century. It describes these concepts in roughly the order in which they were first discovered. For a more complete history of the subject, see ''
History of quantum mechanics The history of quantum mechanics is a fundamental part of the history of modern physics. Quantum mechanics' history, as it interlaces with the history of quantum chemistry, began essentially with a number of different scientific discoveries: the ...
''. Light behaves in some aspects like particles and in other aspects like waves. Matter—the "stuff" of the universe consisting of particles such as
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s and
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s—exhibits wavelike behavior too. Some light sources, such as neon lights, give off only certain specific frequencies of light, a small set of distinct pure colors determined by neon's atomic structure. Quantum mechanics shows that light, along with all other forms of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
, comes in discrete units, called
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s, and predicts its
spectral ''Spectral'' is a 2016 3D military science fiction, supernatural horror fantasy and action-adventure thriller war film directed by Nic Mathieu. Written by himself, Ian Fried, and George Nolfi from a story by Fried and Mathieu. The film stars ...
energies (corresponding to pure colors), and the intensities of its light beams. A single photon is a ''
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
'', or smallest observable particle, of the electromagnetic field. A partial photon is never experimentally observed. More broadly, quantum mechanics shows that many properties of objects, such as position, speed, and
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
, that appeared continuous in the zoomed-out view of classical mechanics, turn out to be (in the very tiny, zoomed-in scale of quantum mechanics) '' quantized''. Such properties of
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, antiqu ...
are required to take on one of a set of small, discrete allowable values, and since the gap between these values is also small, the discontinuities are only apparent at very tiny (atomic) scales. Many aspects of quantum mechanics are counterintuitive and can seem
paradox A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...
ical because they describe behavior quite different from that seen at larger scales. In the words of quantum physicist
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superflu ...
, quantum mechanics deals with "nature as She is—absurd". One principal "paradox" is the apparent inconsistency between Newton's laws and quantum mechanics which can be explained using
Ehrenfest's theorem The Ehrenfest theorem, named after Paul Ehrenfest, an Austrian theoretical physicist at Leiden University, relates the time derivative of the expectation values of the position and momentum operators ''x'' and ''p'' to the expectation value of th ...
, which shows that the average values obtained from quantum mechanics (e.g. position and momentum) obey classical laws. However, Ehrenfest's theorem is far from capable of explaining all the counterintuitive phenomena (
quantum weirdness Quantum weirdness encompasses the aspects of quantum mechanics that challenge and defy human physical intuition based on the Newtonian mechanics of classical physics. These aspects include: * quantum entanglement; * quantum nonlocality, referred ...
) that have been observed, but rather is a mathematical expression of the
correspondence principle In physics, the correspondence principle states that the behavior of systems described by the theory of quantum mechanics (or by the old quantum theory) reproduces classical physics in the limit of large quantum numbers. In other words, it says t ...
. For example, the
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
of quantum mechanics means that the more closely one pins down one
measurement Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared ...
(such as the position of a particle), the less accurate another
complementary A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
measurement pertaining to the same particle (such as its
speed In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quanti ...
) must become. Another example is entanglement, in which a measurement of any two-valued state of a particle (such as light polarized up or down) made on either of two "entangled" particles that are very far apart causes a subsequent measurement on the other particle to always be the other of the two values (such as polarized in the opposite direction). A final example is
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two i ...
, in which a container of liquid helium, cooled down to near
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
in temperature spontaneously flows (slowly) up and over the opening of its container, against the force of gravity.


The first quantum theory: Max Planck and black-body radiation

Thermal radiation Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) is ...
is electromagnetic radiation emitted from the surface of an object due to the object's internal energy. If an object is heated sufficiently, it starts to emit light at the red end of the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
, as it becomes red hot. Heating it further causes the color to change from red to yellow, white, and blue, as it emits light at increasingly shorter wavelengths (higher frequencies). A perfect emitter is also a perfect absorber: when it is cold, such an object looks perfectly black, because it absorbs all the light that falls on it and emits none. Consequently, an ideal thermal emitter is known as a
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
, and the radiation it emits is called
black-body radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
. By the late 19th century, thermal radiation had been fairly well characterized experimentally.Several formulas had been created that could describe some of the experimental measurements of thermal radiation: how the wavelength at which the radiation is strongest changes with temperature is given by
Wien's displacement law Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck r ...
, the overall power emitted per unit area is given by the
Stefan–Boltzmann law The Stefan–Boltzmann law describes the power radiated from a black body in terms of its temperature. Specifically, the Stefan–Boltzmann law states that the total energy radiated per unit surface area of a black body across all wavelengths ...
. The best theoretical explanation of the experimental results was the
Rayleigh–Jeans law In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments. For wavelength λ, it is: B_ (T) = \ ...
, which agrees with experimental results well at large wavelengths (or, equivalently, low frequencies), but strongly disagrees at short wavelengths (or high frequencies). In fact, at short wavelengths, classical physics predicted that energy will be emitted by a hot body at an infinite rate. This result, which is clearly wrong, is known as the
ultraviolet catastrophe The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century/early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy ...
.
However, classical physics led to the
Rayleigh–Jeans law In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments. For wavelength λ, it is: B_ (T) = \ ...
, which, as shown in the figure, agrees with experimental results well at low frequencies, but strongly disagrees at high frequencies. Physicists searched for a single theory that explained all the experimental results. The first model that was able to explain the full spectrum of thermal radiation was put forward by
Max Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
in 1900. He proposed a mathematical model in which the thermal radiation was in equilibrium with a set of
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'': \v ...
s. To reproduce the experimental results, he had to assume that each oscillator emitted an integer number of units of energy at its single characteristic frequency, rather than being able to emit any arbitrary amount of energy. In other words, the energy emitted by an oscillator was ''quantized''.The word ''
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
'' comes from the Latin word for "how much" (as does ''quantity''). Something that is ''quantized'', as the energy of Planck's harmonic oscillators, can only take specific values. For example, in most countries, money is effectively quantized, with the ''quantum of money'' being the lowest-value coin in circulation. Mechanics is the branch of science that deals with the action of forces on objects. So, quantum mechanics is the part of mechanics that deals with objects for which particular properties are quantized.
The
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
of energy for each oscillator, according to Planck, was proportional to the frequency of the oscillator; the constant of proportionality is now known as the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
. The Planck constant, usually written as , has the value of . So, the energy of an oscillator of frequency is given by :E = nhf,\quad \text\quad n = 1,2,3,\ldots To change the color of such a radiating body, it is necessary to change its temperature.
Planck's law In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature , when there is no net flow of matter or energy between the body and its environment. At ...
explains why: increasing the temperature of a body allows it to emit more energy overall, and means that a larger proportion of the energy is towards the violet end of the spectrum. Planck's law was the first quantum theory in physics, and Planck won the Nobel Prize in 1918 "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". At the time, however, Planck's view was that quantization was purely a heuristic mathematical construct, rather than (as is now believed) a fundamental change in our understanding of the world.


Photons: the quantization of light

In 1905,
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
took an extra step. He suggested that quantization was not just a mathematical construct, but that the energy in a beam of light actually occurs in individual packets, which are now called
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s. The energy of a single photon of light of frequency f is given by the frequency multiplied by Planck's constant h (an extremely tiny positive number): :E = hf For centuries, scientists had debated between two possible theories of light: was it a
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (res ...
or did it instead comprise a stream of tiny particles? By the 19th century, the debate was generally considered to have been settled in favor of the wave theory, as it was able to explain observed effects such as
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomeno ...
,
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
,
interference Interference is the act of interfering, invading, or poaching. Interference may also refer to: Communications * Interference (communication), anything which alters, modifies, or disrupts a message * Adjacent-channel interference, caused by extr ...
, and polarization.
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
had shown that electricity, magnetism, and light are all manifestations of the same phenomenon: the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
.
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
, which are the complete set of laws of
classical electromagnetism Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model; It is, therefore, a classical fie ...
, describe light as waves: a combination of oscillating electric and magnetic fields. Because of the preponderance of evidence in favor of the wave theory, Einstein's ideas were met initially with great skepticism. Eventually, however, the photon model became favored. One of the most significant pieces of evidence in its favor was its ability to explain several puzzling properties of the
photoelectric effect The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid st ...
, described in the following section. Nonetheless, the wave analogy remained indispensable for helping to understand other characteristics of light:
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
,
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomeno ...
, and
interference Interference is the act of interfering, invading, or poaching. Interference may also refer to: Communications * Interference (communication), anything which alters, modifies, or disrupts a message * Adjacent-channel interference, caused by extr ...
.


The photoelectric effect

In 1887,
Heinrich Hertz Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's Maxwell's equations, equations of electrom ...
observed that when light with sufficient frequency hits a metallic surface, the surface emits electrons. In 1902,
Philipp Lenard Philipp Eduard Anton von Lenard (; hu, Lénárd Fülöp Eduárd Antal; 7 June 1862 – 20 May 1947) was a Hungarian-born German physicist and the winner of the Nobel Prize for Physics in 1905 for his work on cathode rays and the discovery of m ...
discovered that the maximum possible energy of an ejected electron is related to the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of the light, not to its
intensity Intensity may refer to: In colloquial use *Strength (disambiguation) *Amplitude * Level (disambiguation) * Magnitude (disambiguation) In physical sciences Physics *Intensity (physics), power per unit area (W/m2) *Field strength of electric, ma ...
: if the frequency is too low, no electrons are ejected regardless of the intensity. Strong beams of light toward the red end of the spectrum might produce no electrical potential at all, while weak beams of light toward the violet end of the spectrum would produce higher and higher voltages. The lowest frequency of light that can cause electrons to be emitted, called the threshold frequency, is different for different metals. This observation is at odds with classical electromagnetism, which predicts that the electron's energy should be proportional to the intensity of the incident radiation.Alt URL
So when physicists first discovered devices exhibiting the photoelectric effect, they initially expected that a higher intensity of light would produce a higher voltage from the photoelectric device. Einstein explained the effect by postulating that a beam of light is a stream of particles ("
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s") and that, if the beam is of frequency , then each photon has an energy equal to . An electron is likely to be struck only by a single photon, which imparts at most an energy to the electron. Therefore, the intensity of the beam has no effect and only its frequency determines the maximum energy that can be imparted to the electron. To explain the threshold effect, Einstein argued that it takes a certain amount of energy, called the ''
work function In solid-state physics, the work function (sometimes spelt workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" m ...
'' and denoted by , to remove an electron from the metal. This amount of energy is different for each metal. If the energy of the photon is less than the work function, then it does not carry sufficient energy to remove the electron from the metal. The threshold frequency, , is the frequency of a photon whose energy is equal to the work function: :\varphi = h f_0. If is greater than , the energy is enough to remove an electron. The ejected electron has a
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
, , which is, at most, equal to the photon's energy minus the energy needed to dislodge the electron from the metal: :E_K = hf - \varphi = h(f - f_0). Einstein's description of light as being composed of particles extended Planck's notion of quantized energy, which is that a single photon of a given frequency, , delivers an invariant amount of energy, . In other words, individual photons can deliver more or less energy, but only depending on their frequencies. In nature, single photons are rarely encountered. The Sun and emission sources available in the 19th century emit vast numbers of photons every second, and so the importance of the energy carried by each photon was not obvious. Einstein's idea that the energy contained in individual units of light depends on their frequency made it possible to explain experimental results that had seemed counterintuitive. However, although the photon is a particle, it was still being described as having the wave-like property of frequency. Effectively, the account of light as a particle is insufficient, and its wave-like nature is still required.


Consequences of light being quantized

The relationship between the frequency of electromagnetic radiation and the energy of each photon is why
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
light can cause
sunburn Sunburn is a form of radiation burn that affects living tissue, such as skin, that results from an overexposure to ultraviolet (UV) radiation, usually from the Sun. Common symptoms in humans and animals include: red or reddish skin that is ho ...
, but visible or
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
light cannot. A photon of ultraviolet light delivers a high amount of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
—enough to contribute to cellular damage such as occurs in a sunburn. A photon of infrared light delivers less energy—only enough to warm one's skin. So, an infrared lamp can warm a large surface, perhaps large enough to keep people comfortable in a cold room, but it cannot give anyone a sunburn. All photons of the same frequency have identical energy, and all photons of different frequencies have proportionally (order 1, ) different energies. However, although the energy imparted by photons is invariant at any given frequency, the initial energy state of the electrons in a photoelectric device before absorption of light is not necessarily uniform. Anomalous results may occur in the case of individual electrons. For instance, an electron that was already excited above the equilibrium level of the photoelectric device might be ejected when it absorbed uncharacteristically low-frequency illumination. Statistically, however, the characteristic behavior of a photoelectric device reflects the behavior of the vast majority of its electrons, which are at their equilibrium level. This point helps clarify the distinction between the study of small individual particles in quantum dynamics and the study of massive individual particles in classical physics.


The quantization of matter: the Bohr model of the atom

By the dawn of the 20th century, the evidence required a model of the atom with a diffuse cloud of negatively charged
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s surrounding a small, dense, positively charged
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
. These properties suggested a model in which electrons circle the nucleus like planets orbiting a star.The classical model of the atom is called the planetary model, or sometimes the
Rutherford model The Rutherford model was devised by the New Zealand-born physicist Ernest Rutherford to describe an atom. Rutherford directed the Geiger–Marsden experiment in 1909, which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson's plum ...
—after
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
who proposed it in 1911, based on the Geiger–Marsden gold foil experiment, which first demonstrated the existence of the nucleus.
However, it was also known that the atom in this model would be unstable: according to classical theory, orbiting electrons are undergoing centripetal acceleration, and should therefore give off electromagnetic radiation, the loss of energy also causing them to spiral toward the nucleus, colliding with it in a fraction of a second. A second, related puzzle was the
emission spectrum The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an electron making a atomic electron transition, transition from a high energy state to a lower energy st ...
of atoms. When a gas is heated, it gives off light only at discrete frequencies. For example, the visible light given off by
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
consists of four different colors, as shown in the picture below. The intensity of the light at different frequencies is also different. By contrast, white light consists of a continuous emission across the whole range of visible frequencies. By the end of the nineteenth century, a simple rule known as
Balmer's formula The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered b ...
showed how the frequencies of the different lines related to each other, though without explaining why this was, or making any prediction about the intensities. The formula also predicted some additional spectral lines in ultraviolet and infrared light that had not been observed at the time. These lines were later observed experimentally, raising confidence in the value of the formula. In 1885 the Swiss mathematician
Johann Balmer Johann Jakob Balmer (1 May 1825 – 12 March 1898) was a Swiss mathematician best known for his work in physics, the Balmer series of hydrogen atom. Biography Balmer was born in Lausen, Switzerland, the son of a chief justice also named Johann ...
discovered that each wavelength (lambda) in the visible spectrum of hydrogen is related to some integer by the equation :\lambda = B\left(\frac\right) \qquad\qquad n = 3,4,5,6 where is a constant Balmer determined is equal to 364.56 nm. In 1888
Johannes Rydberg Johannes (Janne) Robert Rydberg (; 8 November 1854 – 28 December 1919) was a Swedish physicist mainly known for devising the Rydberg formula, in 1888, which is used to describe the wavelengths of photons (of visible light and other electrom ...
generalized and greatly increased the explanatory utility of Balmer's formula. He predicted that is related to two integers and according to what is now known as the
Rydberg formula In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was ...
: : \frac = R \left(\frac - \frac\right), where ''R'' is the
Rydberg constant In spectroscopy, the Rydberg constant, symbol R_\infty for heavy atoms or R_\text for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectra of an atom. The constant first aro ...
, equal to 0.0110 nm−1, and ''n'' must be greater than ''m''. Rydberg's formula accounts for the four visible wavelengths of hydrogen by setting and . It also predicts additional wavelengths in the emission spectrum: for and for , the emission spectrum should contain certain ultraviolet wavelengths, and for and , it should also contain certain infrared wavelengths. Experimental observation of these wavelengths came two decades later: in 1908 Louis Paschen found some of the predicted infrared wavelengths, and in 1914
Theodore Lyman Theodore Lyman may refer to: * Theodore B. Lyman (1815–1893), American bishop * Theodore Lyman II (1792–1849), American philanthropist, politician, and author * Theodore Lyman III (1833–1897), American natural scientist, military staff offic ...
found some of the predicted ultraviolet wavelengths. Both Balmer and Rydberg's formulas involve integers: in modern terms, they imply that some property of the atom is quantized. Understanding exactly what this property was, and why it was quantized, was a major part of the development of quantum mechanics, as shown in the rest of this article. In 1913
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. B ...
proposed a new model of the atom that included quantized electron orbits: electrons still orbit the nucleus much as planets orbit around the sun, but they are permitted to inhabit only certain orbits, not to orbit at any arbitrary distance. When an atom emitted (or absorbed) energy, the electron did not move in a continuous trajectory from one orbit around the nucleus to another, as might be expected classically. Instead, the electron would jump instantaneously from one orbit to another, giving off the emitted light in the form of a photon.Alt URL
/ref> The possible energies of photons given off by each element were determined by the differences in energy between the orbits, and so the emission spectrum for each element would contain a number of lines. Starting from only one simple assumption about the rule that the orbits must obey, the Bohr model was able to relate the observed spectral lines in the emission spectrum of hydrogen to previously known constants. In Bohr's model, the electron was not allowed to emit energy continuously and crash into the nucleus: once it was in the closest permitted orbit, it was stable forever. Bohr's model did not explain why the orbits should be quantized in that way, nor was it able to make accurate predictions for atoms with more than one electron, or to explain why some spectral lines are brighter than others. Some fundamental assumptions of the Bohr model were soon proven wrong—but the key result that the discrete lines in emission spectra are due to some property of the electrons in atoms being quantized is correct. The way that the electrons actually behave is strikingly different from Bohr's atom, and from what we see in the world of our everyday experience; this modern quantum mechanical model of the atom is discussed
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) Bottom may refer to: Anatomy and sex * Bottom (BDSM), the partner in a BDSM who takes the passive, receiving, or obedient role, to that of the top or ...
. Bohr theorized that the
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
, , of an electron is quantized: :L = n\frac=n\hbar where is an integer and and are the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
and Planck reduced constant respectively. Starting from this assumption,
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventiona ...
and the equations of
circular motion In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of ro ...
show that an electron with units of angular momentum orbits a proton at a distance given by :r = \frac, where is the
Coulomb constant The Coulomb constant, the electric force constant, or the electrostatic constant (denoted , or ) is a proportionality constant in electrostatics equations. In SI base units it is equal to .Derived from ''k''e = 1/(4''πε''0) – It was named ...
, is the mass of an electron, and is the charge on an electron. For simplicity this is written as :r = n^2 a_0,\! where , called the
Bohr radius The Bohr radius (''a''0) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an ...
, is equal to 0.0529 nm. The Bohr radius is the radius of the smallest allowed orbit. The energy of the electronIn this case, the energy of the electron is the sum of its
kinetic Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory of gases, Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to i ...
and
potential Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple re ...
energies. The electron has kinetic energy by virtue of its actual motion around the nucleus, and potential energy because of its electromagnetic interaction with the nucleus.
can also be calculated, and is given by :E = -\frac \frac. Thus Bohr's assumption that angular momentum is quantized means that an electron can inhabit only certain orbits around the nucleus and that it can have only certain energies. A consequence of these constraints is that the electron does not crash into the nucleus: it cannot continuously emit energy, and it cannot come closer to the nucleus than ''a''0 (the Bohr radius). An electron loses energy by jumping instantaneously from its original orbit to a lower orbit; the extra energy is emitted in the form of a photon. Conversely, an electron that absorbs a photon gains energy, hence it jumps to an orbit that is farther from the nucleus. Each photon from glowing atomic hydrogen is due to an electron moving from a higher orbit, with radius , to a lower orbit, . The energy of this photon is the difference in the energies and of the electron: :E_ = E_n - E_m = \frac\left(\frac-\frac\right) Since Planck's equation shows that the photon's energy is related to its wavelength by , the wavelengths of light that can be emitted are given by :\frac = \frac\left(\frac-\frac\right). This equation has the same form as the
Rydberg formula In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was ...
, and predicts that the constant should be given by :R = \frac . Therefore, the Bohr model of the atom can predict the emission spectrum of hydrogen in terms of fundamental constants.The model can be easily modified to account for the emission spectrum of any system consisting of a nucleus and a single electron (that is,
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s such as He+ or O7+, which contain only one electron) but cannot be extended to an atom with two electrons such as neutral helium.
However, it was not able to make accurate predictions for multi-electron atoms, or to explain why some spectral lines are brighter than others.


Wave–particle duality

Just as light has both wave-like and particle-like properties, matter also has wave-like properties. Matter behaving as a wave was first demonstrated experimentally for electrons: a beam of electrons can exhibit
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
, just like a beam of light or a water wave.Electron diffraction was first demonstrated three years after de Broglie published his hypothesis. At the
University of Aberdeen The University of Aberdeen ( sco, University o' 'Aiberdeen; abbreviated as ''Aberd.'' in List of post-nominal letters (United Kingdom), post-nominals; gd, Oilthigh Obar Dheathain) is a public university, public research university in Aberdeen, Sc ...
,
George Thomson George Thomson may refer to: Government and politics * George Thomson (MP for Southwark) (c. 1607–1691), English merchant and Parliamentarian soldier, official and politician * George Thomson, Baron Thomson of Monifieth (1921–2008), Scottish p ...
passed a beam of electrons through a thin metal film and observed diffraction patterns, as would be predicted by the de Broglie hypothesis. At
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
, Davisson and Germer guided an electron beam through a crystalline grid. De Broglie was awarded the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
in 1929 for his hypothesis; Thomson and Davisson shared the Nobel Prize for Physics in 1937 for their experimental work.
Similar wave-like phenomena were later shown for atoms and even molecules. The wavelength, ''λ'', associated with any object is related to its momentum, ''p'', through the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
, ''h'': : p = \frac. The relationship, called the de Broglie hypothesis, holds for all types of matter: all matter exhibits properties of both particles and waves. The concept of wave–particle duality says that neither the classical concept of "particle" nor of "wave" can fully describe the behavior of quantum-scale objects, either photons or matter. Wave–particle duality is an example of the
principle of complementarity In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot al ...
in quantum physics. An elegant example of wave-particle duality, the double-slit experiment, is discussed in the section below.


The double-slit experiment

In the double-slit experiment, as originally performed by Thomas Young in 1803, and then
Augustin Fresnel Augustin-Jean Fresnel (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton's corpuscular theo ...
a decade later, a beam of light is directed through two narrow, closely spaced slits, producing an
interference pattern In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive ...
of light and dark bands on a screen. If one of the slits is covered up, one might naïvely expect that the intensity of the fringes due to interference would be halved everywhere. In fact, a much simpler pattern is seen, a
diffraction pattern Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
diametrically opposite the open slit. The same behavior can be demonstrated in water waves, and so the double-slit experiment was seen as a demonstration of the wave nature of light. Variations of the double-slit experiment have been performed using electrons, atoms, and even large molecules, and the same type of interference pattern is seen. Thus it has been demonstrated that all
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
possesses both particle and wave characteristics. Even if the source intensity is turned down, so that only one particle (e.g. photon or electron) is passing through the apparatus at a time, the same interference pattern develops over time. The quantum particle acts as a wave when passing through the double slits, but as a particle when it is detected. This is a typical feature of quantum complementarity: a quantum particle acts as a wave in an experiment to measure its wave-like properties, and like a particle in an experiment to measure its particle-like properties. The point on the detector screen where any individual particle shows up is the result of a random process. However, the distribution pattern of many individual particles mimics the diffraction pattern produced by waves.


Application to the Bohr model

De Broglie expanded the
Bohr model of the atom In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar Syst ...
by showing that an electron in orbit around a nucleus could be thought of as having wave-like properties. In particular, an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
is observed only in situations that permit a
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
around a
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
. An example of a standing wave is a violin string, which is fixed at both ends and can be made to vibrate. The waves created by a stringed instrument appear to oscillate in place, moving from crest to trough in an up-and-down motion. The wavelength of a standing wave is related to the length of the vibrating object and the boundary conditions. For example, because the violin string is fixed at both ends, it can carry standing waves of wavelengths \frac, where ''l'' is the length and ''n'' is a positive integer. De Broglie suggested that the allowed electron orbits were those for which the circumference of the orbit would be an integer number of wavelengths. The electron's wavelength, therefore, determines that only Bohr orbits of certain distances from the nucleus are possible. In turn, at any distance from the nucleus smaller than a certain value, it would be impossible to establish an orbit. The minimum possible distance from the nucleus is called the Bohr radius. De Broglie's treatment of quantum events served as a starting point for Schrödinger when he set out to construct a wave equation to describe quantum-theoretical events.


Spin

In 1922,
Otto Stern :''Otto Stern was also the pen name of German women's rights activist Louise Otto-Peters (1819–1895)''. Otto Stern (; 17 February 1888 – 17 August 1969) was a German-American physicist and Nobel laureate in physics. He was the second most n ...
and
Walther Gerlach Walther Gerlach (1 August 1889 – 10 August 1979) was a German physicist who co-discovered, through laboratory experiment, spin quantization in a magnetic field, the Stern–Gerlach effect. The experiment was conceived by Otto Stern in 1921 an ...
shot silver atoms through an
inhomogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. Relative to its northern pole, pointing up, down, or somewhere in between, in classical mechanics, a magnet thrown through a magnetic field may be deflected a small or large distance upwards or downwards. The atoms that Stern and Gerlach shot through the magnetic field acted similarly. However, while the magnets could be deflected variable distances, the atoms would always be deflected a constant distance either up or down. This implied that the property of the atom that corresponds to the magnet's orientation must be quantized, taking one of two values (either up or down), as opposed to being chosen freely from any angle.
Ralph Kronig Ralph Kronig (10 March 1904 – 16 November 1995) was a German physicist. He is noted for the discovery of particle spin and for his theory of X-ray absorption spectroscopy. His theories include the Kronig–Penney model, the Coster–Kronig tra ...
originated the theory that particles such as atoms or electrons behave as if they rotate, or "spin", about an axis. Spin would account for the missing
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets ...
, and allow two electrons in the same orbital to occupy distinct
quantum state In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in ...
s if they "spun" in opposite directions, thus satisfying the exclusion principle. The quantum number represented the sense (positive or negative) of spin. The choice of the orientation of the magnetic field used in the Stern–Gerlach experiment is arbitrary. In the animation shown here, the field is vertical and so the atoms are deflected either up or down. If the magnet is rotated a quarter turn, the atoms are deflected either left or right. Using a vertical field shows that the spin along the vertical axis is quantized, and using a horizontal field shows that the spin along the horizontal axis is quantized. If instead of hitting a detector screen, one of the beams of atoms coming out of the Stern–Gerlach apparatus is passed into another (inhomogeneous) magnetic field oriented in the same direction, all of the atoms are deflected the same way in this second field. However, if the second field is oriented at 90° to the first, then half of the atoms are deflected one way and half the other so that the atom's spin about the horizontal and vertical axes are independent of each other. However, if one of these beams (e.g. the atoms that were deflected up then left) is passed into a third magnetic field, oriented the same way as the first, half of the atoms go one way and half the other, even though they all went in the same direction originally. The action of measuring the atoms' spin concerning a horizontal field has changed their spin concerning a vertical field. The Stern–Gerlach experiment demonstrates several important features of quantum mechanics: * A feature of the natural world has been demonstrated to be quantized, and able to take only certain discrete values. * Particles possess an intrinsic
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
that is closely analogous to the angular momentum of a classically spinning object. *
Measurement Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared ...
changes the system being measured in quantum mechanics. Only the spin of an object in one direction can be known, and observing the spin in another direction destroys the original information about the spin. * Quantum mechanics is probabilistic: whether the spin of any individual atom sent into the apparatus is positive or negative is random.


Development of modern quantum mechanics

In 1925,
Werner Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent series ...
attempted to solve one of the problems that the Bohr model left unanswered, explaining the intensities of the different lines in the hydrogen emission spectrum. Through a series of mathematical analogies, he wrote out the quantum-mechanical analog for the classical computation of intensities. See Werner Heisenberg's paper, "Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations" pp. 261–76 Shortly afterward, Heisenberg's colleague
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a n ...
realized that Heisenberg's method of calculating the probabilities for transitions between the different energy levels could best be expressed by using the mathematical concept of
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
.For a somewhat more sophisticated look at how Heisenberg transitioned from the old quantum theory and classical physics to the new quantum mechanics, see
Heisenberg's entryway to matrix mechanics Werner Heisenberg contributed to science at a point when the old quantum physics was discovering a field littered with more and more stumbling blocks. He decided that quantum physics had to be re-thought from the ground up. In doing so he excise ...
.
In the same year, building on de Broglie's hypothesis,
Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger (, ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was a Nobel Prize-winning Austrian physicist with Irish citizenship who developed a number of fundamental results in quantum theory ...
developed the equation that describes the behavior of a quantum-mechanical wave. The mathematical model, called the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
after its creator, is central to quantum mechanics, defines the permitted stationary states of a quantum system, and describes how the quantum state of a physical system changes in time."Schrodinger Equation (Physics)", ''Encyclopædia Britannica ''
/ref> The wave itself is described by a mathematical function known as a "
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements mad ...
". Schrödinger said that the wave function provides the "means for predicting the probability of measurement results". Schrödinger was able to calculate the energy levels of hydrogen by treating a hydrogen atom's
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
as a classical wave, moving in a well of the electrical potential created by the proton. This calculation accurately reproduced the energy levels of the Bohr model. In May 1926, Schrödinger proved that Heisenberg's
matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum j ...
and his own
wave mechanics Wave mechanics may refer to: * the mechanics of waves * the ''wave equation'' in quantum physics, see Schrödinger equation See also * Quantum mechanics * Wave equation The (two-way) wave equation is a second-order linear partial different ...
made the same predictions about the properties and behavior of the electron; mathematically, the two theories had an underlying common form. Yet the two men disagreed on the interpretation of their mutual theory. For instance, Heisenberg accepted the theoretical prediction of jumps of electrons between orbitals in an atom, but Schrödinger hoped that a theory based on continuous wave-like properties could avoid what he called (as paraphrased by
Wilhelm Wien Wilhelm Carl Werner Otto Fritz Franz Wien (; 13 January 1864 – 30 August 1928) was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody ...
) "this nonsense about quantum jumps". In the end, Heisenberg's approach won out, and quantum jumps were confirmed.


Copenhagen interpretation

Bohr, Heisenberg, and others tried to explain what these experimental results and mathematical models really mean. Their description, known as the Copenhagen interpretation of quantum mechanics, aimed to describe the nature of reality that was being probed by the measurements and described by the mathematical formulations of quantum mechanics. The main principles of the Copenhagen interpretation are: # A system is completely described by a
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements mad ...
, usually represented by the Greek letter \psi ("psi"). (Heisenberg) # How \psi changes over time is given by the Schrödinger equation. # The description of nature is essentially probabilistic. The probability of an event—for example, where on the screen a particle shows up in the double-slit experiment—is related to the square of the absolute value of the amplitude of its wave function. (
Born rule The Born rule (also called Born's rule) is a key postulate of quantum mechanics which gives the probability that a measurement of a quantum system will yield a given result. In its simplest form, it states that the probability density of findin ...
, due to
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a n ...
, which gives a physical meaning to the wave function in the Copenhagen interpretation: the
probability amplitude In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The modulus squared of this quantity represents a probability density. Probability amplitudes provide a relationship between the quan ...
) # It is not possible to know the values of all of the properties of the system at the same time; those properties that are not known with precision must be described by probabilities. (Heisenberg's
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
) # Matter, like energy, exhibits a wave-particle duality. An experiment can demonstrate the particle-like properties of matter, or its wave-like properties; but not both at the same time. ( Complementarity principle due to Bohr) # Measuring devices are essentially classical devices and measure classical properties such as position and momentum. # The quantum mechanical description of large systems should closely approximate the classical description. (
Correspondence principle In physics, the correspondence principle states that the behavior of systems described by the theory of quantum mechanics (or by the old quantum theory) reproduces classical physics in the limit of large quantum numbers. In other words, it says t ...
of Bohr and Heisenberg) Various consequences of these principles are discussed in more detail in the following subsections.


Uncertainty principle

Suppose it is desired to measure the position and speed of an object—for example, a car going through a radar speed trap. It can be assumed that the car has a definite position and speed at a particular moment in time. How accurately these values can be measured depends on the quality of the measuring equipment. If the precision of the measuring equipment is improved, it provides a result closer to the true value. It might be assumed that the speed of the car and its position could be operationally defined and measured simultaneously, as precisely as might be desired. In 1927, Heisenberg proved that this last assumption is not correct. Quantum mechanics shows that certain pairs of physical properties, for example, position and speed, cannot be simultaneously measured, nor defined in operational terms, to arbitrary precision: the more precisely one property is measured, or defined in operational terms, the less precisely can the other. This statement is known as the
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
. The uncertainty principle is not only a statement about the accuracy of our measuring equipment but, more deeply, is about the conceptual nature of the measured quantities—the assumption that the car had simultaneously defined position and speed does not work in quantum mechanics. On a scale of cars and people, these uncertainties are negligible, but when dealing with atoms and electrons they become critical. Heisenberg gave, as an illustration, the measurement of the position and momentum of an electron using a photon of light. In measuring the electron's position, the higher the frequency of the photon, the more accurate is the measurement of the position of the impact of the photon with the electron, but the greater is the disturbance of the electron. This is because from the impact with the photon, the electron absorbs a random amount of energy, rendering the measurement obtained of its
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
increasingly uncertain (momentum is velocity multiplied by mass), for one is necessarily measuring its post-impact disturbed momentum from the collision products and not its original momentum (momentum which should be simultaneously measured with position). With a photon of lower frequency, the disturbance (and hence uncertainty) in the momentum is less, but so is the accuracy of the measurement of the position of the impact."Uncertainty principle", ''Encyclopædia Britannica''
/ref> At the heart of the uncertainty principle is a fact that for any mathematical analysis in the position and velocity domains, achieving a sharper (more precise) curve in the position domain can only be done at the expense of a more gradual (less precise) curve in the speed domain, and vice versa. More sharpness in the position domain requires contributions from more frequencies in the speed domain to create the narrower curve, and vice versa. It is a fundamental tradeoff inherent in any such related or
complementary A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
measurements, but is only really noticeable at the smallest (Planck) scale, near the size of
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, antiqu ...
. The uncertainty principle shows mathematically that the product of the uncertainty in the position and
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
of a particle (momentum is velocity multiplied by mass) could never be less than a certain value, and that this value is related to Planck's constant.


Wave function collapse

''Wave function collapse'' means that a measurement has forced or converted a quantum (probabilistic or potential) state into a definite measured value. This phenomenon is only seen in quantum mechanics rather than classical mechanics. For example, before a photon actually "shows up" on a detection screen it can be described only with a set of probabilities for where it might show up. When it does appear, for instance in the CCD of an electronic camera, the time and space where it interacted with the device are known within very tight limits. However, the photon has disappeared in the process of being captured (measured), and its quantum
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements mad ...
has disappeared with it. In its place, some macroscopic physical change in the detection screen has appeared, e.g., an exposed spot in a sheet of photographic film, or a change in electric potential in some cell of a CCD.


Eigenstates and eigenvalues

Because of the
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
, statements about both the position and momentum of particles can assign only a
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
that the position or momentum has some numerical value. Therefore, it is necessary to formulate clearly the difference between the state of something indeterminate, such as an electron in a probability cloud, and the state of something having a definite value. When an object can definitely be "pinned-down" in some respect, it is said to possess an
eigenstate In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in t ...
. In the Stern–Gerlach experiment discussed above, the spin of the atom about the vertical axis has two eigenstates: up and down. Before measuring it, we can only say that any individual atom has an equal probability of being found to have spin up or spin down. The measurement process causes the wave function to collapse into one of the two states. The eigenstates of spin about the vertical axis are not simultaneously eigenstates of spin about the horizontal axis, so this atom has an equal probability of being found to have either value of spin about the horizontal axis. As described in the section above, measuring the spin about the horizontal axis can allow an atom that was spun up to spin down: measuring its spin about the horizontal axis collapses its wave function into one of the eigenstates of this measurement, which means it is no longer in an eigenstate of spin about the vertical axis, so can take either value.


The Pauli exclusion principle

In 1924,
Wolfgang Pauli Wolfgang Ernst Pauli (; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics fo ...
proposed a new quantum degree of freedom (or
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be kno ...
), with two possible values, to resolve inconsistencies between observed molecular spectra and the predictions of quantum mechanics. In particular, the spectrum of atomic hydrogen had a
doublet Doublet is a word derived from the Latin ''duplus'', "twofold, twice as much",


Bibliography

* * * * * * * * * * * * * * * * * * * * ''Scientific American Reader'', 1953. * * ; cited in: * * Van Vleck, J. H.,1928, "The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics", ''Proc. Natl. Acad. Sci.'' 14: 179. * * *


Further reading

The following titles, all by working physicists, attempt to communicate quantum theory to laypeople, using a minimum of technical apparatus. *
Jim Al-Khalili Jameel Sadik "Jim" Al-Khalili ( ar, جميل صادق الخليلي; born 20 September 1962) is an Iraqi-British theoretical physicist, author and broadcaster. He is professor of theoretical physics and chair in the public engagement in scien ...
(2003). ''Quantum: A Guide for the Perplexed''. Weidenfeld & Nicolson. . * Chester, Marvin (1987). ''Primer of Quantum Mechanics''. John Wiley. . * Brian Cox and Jeff Forshaw (2011) ''
The Quantum Universe ''The Quantum Universe: Everything That Can Happen Does Happen'' is a 2011 book by the theoretical physicists Brian Cox (physicist), Brian Cox and Jeff Forshaw. Overview The book aims to provide an explanation of quantum mechanics and its impact ...
''. Allen Lane. . *
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superflu ...
(1985). '' QED: The Strange Theory of Light and Matter''. Princeton University Press. . * Ford, Kenneth (2005). ''The Quantum World''. Harvard Univ. Press. Includes elementary particle physics. * Ghirardi, GianCarlo (2004). ''Sneaking a Look at God's Cards'', Gerald Malsbary, trans. Princeton Univ. Press. The most technical of the works cited here. Passages using
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
,
trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. T ...
, and
bra–ket notation In quantum mechanics, bra–ket notation, or Dirac notation, is used ubiquitously to denote quantum states. The notation uses angle brackets, and , and a vertical bar , to construct "bras" and "kets". A ket is of the form , v \rangle. Mathema ...
can be passed over on a first reading. *
Tony Hey Professor Anthony John Grenville Hey (born 17 August 1946) was Vice-President of Microsoft Research Connections, a division of Microsoft Research, until his departure in 2014. Education Hey was educated at King Edward's School, Birmingham and ...
and Walters, Patrick (2003). ''The New Quantum Universe''. Cambridge Univ. Press. Includes much about the technologies quantum theory has made possible. . * Vladimir G. Ivancevic, Tijana T. Ivancevic (2008). ''Quantum leap: from Dirac and Feynman, Across the universe, to human body and mind''. World Scientific Publishing Company. Provides an intuitive introduction in non-mathematical terms and an introduction in comparatively basic mathematical terms. . * J. P. McEvoy and Oscar Zarate (2004). ''Introducing Quantum Theory''. Totem Books. ' *
N. David Mermin Nathaniel David Mermin (; born 30 March 1935) is a solid-state physicist at Cornell University best known for the eponymous Mermin–Wagner theorem, his application of the term " boojum" to superfluidity, his textbook with Neil Ashcroft on sol ...
(1990). "Spooky actions at a distance: mysteries of the QT" in his ''Boojums all the way through''. Cambridge Univ. Press: 110–76. The author is a rare physicist who tries to communicate to philosophers and humanists. . *
Roland Omnès Roland Omnès (born 18 February 1931), is the author of several books which aim to give non-scientists the information required to understand quantum mechanics from an everyday standpoint. Biography Omnès is currently Professor Emeritus of Th ...
(1999). ''Understanding Quantum Mechanics''. Princeton Univ. Press. . *
Victor Stenger Victor John Stenger (; January 29, 1935 – August 25, 2014) was an American particle physicist, philosopher, author, and religious skeptic. Following a career as a research scientist in the field of particle physics, Stenger was associat ...
(2000). ''Timeless Reality: Symmetry, Simplicity, and Multiple Universes''. Buffalo NY: Prometheus Books. Chpts. 5–8. . *
Martinus Veltman Martinus Justinus Godefriedus "Tini" Veltman (; 27 June 1931 – 4 January 2021) was a Dutch theoretical physicist. He shared the 1999 Nobel Prize in physics with his former PhD student Gerardus 't Hooft for their work on particle theory. Biogr ...
(2003). ''Facts and Mysteries in Elementary Particle Physics''. World Scientific Publishing Company. .


External links

*
Microscopic World – Introduction to Quantum Mechanics".
by Takada, Kenjiro, Emeritus professor at
Kyushu University , abbreviated to , is a Japanese national university located in Fukuoka, on the island of Kyushu. It was the 4th Imperial University in Japan, ranked as 4th in 2020 Times Higher Education Japan University Rankings, one of the top 10 Design ...

The Quantum Exchange
(tutorials and open-source learning software).
Atoms and the Periodic Table

Single and double slit interference

Time-Evolution of a Wavepacket in a Square Well
An animated demonstration of a wave packet dispersion over time. * {{DEFAULTSORT:Quantum mechanics, Introduction to Articles containing video clips