HOME
The Info List - Apollo Program


--- Advertisement ---



The Apollo
Apollo
program, also known as Project Apollo, was the third United States human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), which accomplished landing the first humans on the Moon
Moon
from 1969 to 1972. First conceived during Dwight D. Eisenhower's administration as a three-man spacecraft to follow the one-man Project Mercury
Project Mercury
which put the first Americans in space, Apollo
Apollo
was later dedicated to President John F. Kennedy's national goal of "landing a man on the Moon
Moon
and returning him safely to the Earth" by the end of the 1960s, which he proposed in an address to Congress on May 25, 1961. Kennedy's goal was accomplished on the Apollo 11
Apollo 11
mission when astronauts Neil Armstrong
Neil Armstrong
and Buzz Aldrin
Buzz Aldrin
landed their Lunar Module (LM) on July 20, 1969, and walked on the lunar surface, while Michael Collins remained in lunar orbit in the Command/Service Module (CSM), and all three landed safely on Earth on July 24. Five subsequent Apollo
Apollo
missions also landed astronauts on the Moon, the last in December 1972. In these six spaceflights, twelve men walked on the Moon.

Buzz Aldrin
Buzz Aldrin
(pictured) walked on the Moon
Moon
with Neil Armstrong, on Apollo
Apollo
11, July 20–21, 1969

Apollo
Apollo
ran from 1961 to 1972, with the first manned flight in 1968. It achieved its goal of manned lunar landing, despite the major setback of a 1967 Apollo 1
Apollo 1
cabin fire that killed the entire crew during a prelaunch test. After the first landing, sufficient flight hardware remained for nine follow-on landings with a plan for extended lunar geological and astrophysical exploration. Budget cuts forced the cancellation of three of these. Five of the remaining six missions achieved successful landings, but the Apollo 13
Apollo 13
landing was prevented by an oxygen tank explosion in transit to the Moon, which destroyed the Service Module's capability to provide electrical power, crippling the CSM's propulsion and life support systems. The crew returned to Earth safely by using the Lunar Module as a "lifeboat" for these functions. Apollo
Apollo
used Saturn family rockets as launch vehicles, which were also used for an Apollo
Apollo
Applications Program, which consisted of Skylab, a space station that supported three manned missions in 1973–74, and the Apollo–Soyuz Test Project, a joint US-Soviet Union Earth-orbit mission in 1975. Apollo
Apollo
set several major human spaceflight milestones. It stands alone in sending manned missions beyond low Earth orbit. Apollo 8
Apollo 8
was the first manned spacecraft to orbit another celestial body, while the final Apollo 17
Apollo 17
mission marked the sixth Moon
Moon
landing and the ninth manned mission beyond low Earth orbit. The program returned 842 pounds (382 kg) of lunar rocks and soil to Earth, greatly contributing to the understanding of the Moon's composition and geological history. The program laid the foundation for NASA's subsequent human spaceflight capability, and funded construction of its Johnson Space Center and Kennedy Space Center. Apollo
Apollo
also spurred advances in many areas of technology incidental to rocketry and manned spaceflight, including avionics, telecommunications, and computers.

Contents

1 Background

1.1 Spacecraft
Spacecraft
feasibility studies 1.2 Political pressure builds

2 NASA
NASA
expansion

2.1 Manned Spacecraft
Spacecraft
Center 2.2 Launch Operations Center 2.3 Organization

3 Choosing a mission mode 4 Spacecraft

4.1 Command/Service Module 4.2 Lunar Module

5 Launch vehicles

5.1 Little Joe II 5.2 Saturn I 5.3 Saturn IB 5.4 Saturn V

6 Astronauts 7 Lunar mission profile

7.1 Profile variations

8 Development history

8.1 Unmanned flight tests 8.2 Preparation for manned flight

8.2.1 Program delays 8.2.2 Apollo 1
Apollo 1
fire 8.2.3 Unmanned Saturn V
Saturn V
and LM tests

8.3 Manned development missions 8.4 Production lunar landings

8.4.1 Mission cutbacks 8.4.2 Extended missions

9 Mission summary 10 Samples returned 11 Costs 12 Apollo
Apollo
Applications Program 13 Recent observations 14 Legacy

14.1 Science and engineering 14.2 Cultural impact 14.3 Apollo 11
Apollo 11
broadcast data restoration project

15 Depictions on film

15.1 Documentaries 15.2 Docudramas

16 See also 17 Notes 18 References 19 Further reading 20 External links

Background[edit] The Apollo
Apollo
program was conceived during the Eisenhower administration in early 1960, as a follow-up to Project Mercury. While the Mercury capsule could only support one astronaut on a limited Earth orbital mission, Apollo
Apollo
would carry three astronauts. Possible missions included ferrying crews to a space station, circumlunar flights, and eventual manned lunar landings. The program was named after the Greek god of light, music, and the sun by NASA
NASA
manager Abe Silverstein, who later said that "I was naming the spacecraft like I'd name my baby."[3] Silverstein chose the name at home one evening, early in 1960, because he felt " Apollo
Apollo
riding his chariot across the Sun was appropriate to the grand scale of the proposed program."[4] Spacecraft
Spacecraft
feasibility studies[edit] Main article: Apollo
Apollo
spacecraft feasibility study In July 1960, NASA
NASA
Deputy Administrator Hugh L. Dryden
Hugh L. Dryden
announced the Apollo
Apollo
program to industry representatives at a series of Space Task Group conferences. Preliminary specifications were laid out for a spacecraft with a mission module cabin separate from the command module (piloting and re-entry cabin), and a propulsion and equipment module. On August 30, a feasibility study competition was announced, and on October 25, three study contracts were awarded to General Dynamics/Convair, General Electric, and the Glenn L. Martin Company. Meanwhile, NASA
NASA
performed its own in-house spacecraft design studies led by Maxime Faget, to serve as a gauge to judge and monitor the three industry designs.[5] Political pressure builds[edit] Main article: Space Race In November 1960, John F. Kennedy
John F. Kennedy
was elected president after a campaign that promised American superiority over the Soviet Union
Soviet Union
in the fields of space exploration and missile defense. Up to the election of 1960, Kennedy had been speaking out against the "missile gap" that he and many other senators felt had formed between the Soviets and themselves due to the inaction of President Eisenhower.[6] Beyond military power, Kennedy used aerospace technology as a symbol of national prestige, pledging to make the US not "first but, first and, first if, but first period."[7] Despite Kennedy's rhetoric, he did not immediately come to a decision on the status of the Apollo program once he became president. He knew little about the technical details of the space program, and was put off by the massive financial commitment required by a manned Moon
Moon
landing.[8] When Kennedy's newly appointed NASA
NASA
Administrator James E. Webb
James E. Webb
requested a 30 percent budget increase for his agency, Kennedy supported an acceleration of NASA's large booster program but deferred a decision on the broader issue.[9] On April 12, 1961, Soviet cosmonaut Yuri Gagarin
Yuri Gagarin
became the first person to fly in space, reinforcing American fears about being left behind in a technological competition with the Soviet Union. At a meeting of the US House Committee on Science and Astronautics one day after Gagarin's flight, many congressmen pledged their support for a crash program aimed at ensuring that America would catch up.[10] Kennedy was circumspect in his response to the news, refusing to make a commitment on America's response to the Soviets.[11]

President Kennedy delivers his proposal to put a man on the Moon before a joint session of Congress, May 25, 1961

On April 20, Kennedy sent a memo to Vice President Lyndon B. Johnson, asking Johnson to look into the status of America's space program, and into programs that could offer NASA
NASA
the opportunity to catch up.[12][13] Johnson responded approximately one week later, concluding that "we are neither making maximum effort nor achieving results necessary if this country is to reach a position of leadership."[14][15] His memo concluded that a manned Moon
Moon
landing was far enough in the future that it was likely the United States
United States
would achieve it first.[14] On May 25, 1961, twenty days after the first US manned spaceflight Freedom 7, Kennedy proposed the manned Moon
Moon
landing in a Special Message to the Congress on Urgent National Needs:

Now it is time to take longer strides - time for a great new American enterprise - time for this nation to take a clearly leading role in space achievement, which in many ways may hold the key to our future on Earth.

...I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon
Moon
and returning him safely to the Earth. No single space project in this period will be more impressive to mankind, or more important in the long-range exploration of space; and none will be so difficult or expensive to accomplish.[16] Full text 

NASA
NASA
expansion[edit] At the time of Kennedy's proposal, only one American had flown in space—less than a month earlier—and NASA
NASA
had not yet sent an astronaut into orbit. Even some NASA
NASA
employees doubted whether Kennedy's ambitious goal could be met.[17] By 1963, Kennedy even came close to agreeing to a joint US-USSR Moon
Moon
mission, to eliminate duplication of effort.[18] With the clear goal of a manned landing replacing the more nebulous goals of space stations and circumlunar flights, NASA
NASA
decided that, in order to make progress quickly, it would discard the feasibility study designs of Convair, GE, and Martin, and proceed with Faget's command / service module design. The mission module was determined to be only useful as an extra room, and therefore deemed unnecessary.[19] They used Faget's design as the specification for another competition for spacecraft procurement bids in October 1961. On November 28, 1961, it was announced that North American Aviation
North American Aviation
had won the contract, although its bid was not rated as good as Martin's. Webb, Dryden and Robert Seamans
Robert Seamans
chose it in preference due to North American's longer association with NASA
NASA
and its predecessor.[20] Landing men on the Moon
Moon
by the end of 1969 required the most sudden burst of technological creativity, and the largest commitment of resources ($25 billion; $107 billion in 2016 dollars)[2] ever made by any nation in peacetime. At its peak, the Apollo
Apollo
program employed 400,000 people and required the support of over 20,000 industrial firms and universities.[21] On July 1, 1960, NASA
NASA
established the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. MSFC designed the heavy lift-class Saturn launch vehicles, which would be required for Apollo.[22] Manned Spacecraft
Spacecraft
Center[edit] Main article: Johnson Space Center It became clear that managing the Apollo
Apollo
program would exceed the capabilities of Robert R. Gilruth's Space Task Group, which had been directing the nation's manned space program from NASA's Langley Research Center. So Gilruth was given authority to grow his organization into a new NASA
NASA
center, the Manned Spacecraft
Spacecraft
Center (MSC). A site was chosen in Houston, Texas, on land donated by Rice University, and Administrator Webb announced the conversion on September 19, 1961.[23] It was also clear NASA
NASA
would soon outgrow its practice of controlling missions from its Cape Canaveral Air Force Station launch facilities in Florida, so a new Mission Control Center would be included in the MSC.[24]

Play media

President Kennedy speaks at Rice University, September 12, 1962 (17 min, 47 sec)

In September 1962, by which time two Project Mercury
Project Mercury
astronauts had orbited the Earth, Gilruth had moved his organization to rented space in Houston, and construction of the MSC facility was under way, Kennedy visited Rice to reiterate his challenge in a famous speech:

But why, some say, the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountain? Why, 35 years ago, fly the Atlantic? ... We choose to go to the Moon. We choose to go to the Moon
Moon
in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills; because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win ... .[25] Full text 

The MSC was completed in September 1963. It was renamed by the US Congress in honor of Lyndon Johnson soon after his death in 1973.[26] Launch Operations Center[edit] Main article: Kennedy Space Center It also became clear that Apollo
Apollo
would outgrow the Canaveral launch facilities in Florida. The two newest launch complexes were already being built for the Saturn I
Saturn I
and IB rockets at the northernmost end: LC-34 and LC-37. But an even bigger facility would be needed for the mammoth rocket required for the manned lunar mission, so land acquisition was started in July 1961 for a Launch Operations Center (LOC) immediately north of Canaveral at Merritt Island. The design, development and construction of the center was conducted by Kurt H. Debus, a member of Dr. Wernher von Braun's original V-2 rocket engineering team. Debus was named the LOC's first Director.[27] Construction began in November 1962. Upon Kennedy's death, President Johnson issued an executive order on November 29, 1963, to rename the LOC and Cape Canaveral in honor of Kennedy.[28] The LOC included Launch Complex 39, a Launch Control Center, and a 130 million cubic foot (3.7 million cubic meter) Vertical Assembly Building (VAB) in which the space vehicle (launch vehicle and spacecraft) would be assembled on a Mobile Launcher Platform
Mobile Launcher Platform
and then moved by a transporter to one of several launch pads. Although at least three pads were planned, only two, designated A and B, were completed in October 1965. The LOC also included an Operations and Checkout Building (OCB) to which Gemini and Apollo
Apollo
spacecraft were initially received prior to being mated to their launch vehicles. The Apollo
Apollo
spacecraft could be tested in two vacuum chambers capable of simulating atmospheric pressure at altitudes up to 250,000 feet (76 km), which is nearly a vacuum.[29][30] Organization[edit] Administrator Webb realized that in order to keep Apollo
Apollo
costs under control, he had to develop greater project management skills in his organization, so he recruited Dr. George E. Mueller for a high management job. Mueller accepted, on the condition that he have a say in NASA
NASA
reorganization necessary to effectively administer Apollo. Webb then worked with Associate Administrator (later Deputy Administrator) Seamans to reorganize the Office of Manned Space Flight (OMSF).[31] On July 23, 1963, Webb announced Mueller's appointment as Deputy Associate Administrator for Manned Space Flight, to replace then Associate Administrator D. Brainerd Holmes on his retirement effective September 1. Under Webb's reorganization, the directors of the Manned Spacecraft
Spacecraft
Center (Gilruth) Marshall Space Flight Center (von Braun) and the Launch Operations Center (Debus) effectively reported to Mueller.[32] Based on his industry experience on Air Force missile projects, Mueller realized some skilled managers could be found among high-ranking officers in the United States
United States
Air Force, so he got Webb's permission to recruit General Samuel C. Phillips, who gained a reputation for his effective management of the Minuteman program, as OMSF program controller. Phillips' superior officer Bernard A. Schriever agreed to loan Phillips to NASA, along with a staff of officers under him, on the condition that Phillips be made Apollo Program Director. Mueller agreed, and Phillips managed Apollo
Apollo
from January 1964, until it achieved the first manned landing in July 1969, after which he returned to Air Force duty.[33] Choosing a mission mode[edit]

John Houbolt
John Houbolt
explaining the LOR concept

See also: Moon
Moon
landing Once Kennedy had defined a goal, the Apollo
Apollo
mission planners were faced with the challenge of designing a spacecraft that could meet it while minimizing risk to human life, cost, and demands on technology and astronaut skill. Four possible mission modes were considered:

Direct Ascent: The spacecraft would be launched as a unit and travel directly to the Moon
Moon
and land. It would return, leaving its landing stage on the Moon. This design would have required development of the extremely powerful Nova launch vehicle. Earth Orbit Rendezvous (EOR): Multiple rocket launches (up to 15 in some plans) would carry parts of a Direct Ascent spacecraft and propulsion units for translunar injection (TLI). These would be assembled into a single spacecraft in Earth orbit. Lunar Orbit Rendezvous
Lunar Orbit Rendezvous
(LOR): A single Saturn V
Saturn V
could launch a spacecraft that was composed of a mother ship which would remain in orbit around the Moon, while a smaller, two-stage lander would carry two astronauts to the surface, return to dock with the mother ship, and then be discarded. Landing only a small part of the spacecraft on the Moon
Moon
and returning an even smaller part to lunar orbit minimized the total mass to be launched from the Earth. Lunar Surface Rendezvous: Two spacecraft would be launched in succession. The first, an automated vehicle carrying propellant for the return to Earth, would land on the Moon, to be followed some time later by the manned vehicle. Propellant would have to be transferred from the automated vehicle to the manned vehicle.[34]

Early Apollo
Apollo
configuration for Direct Ascent and Earth Orbit Rendezvous, 1961

In early 1961, direct ascent was generally the mission mode in favor at NASA. Many engineers feared that a rendezvous—let alone a docking—neither of which had been attempted even in Earth orbit, would be extremely difficult in lunar orbit. Dissenters including John Houbolt at Langley Research Center
Langley Research Center
emphasized the important weight reductions that were offered by the LOR approach. Throughout 1960 and 1961, Houbolt campaigned for the recognition of LOR as a viable and practical option. Bypassing the NASA
NASA
hierarchy, he sent a series of memos and reports on the issue to Associate Administrator Robert Seamans; while acknowledging that he spoke "somewhat as a voice in the wilderness," Houbolt pleaded that LOR should not be discounted in studies of the question.[35] Seamans' establishment of an ad-hoc committee headed by his special technical assistant Nicholas E. Golovin in July 1961, to recommend a launch vehicle to be used in the Apollo
Apollo
program, represented a turning point in NASA's mission mode decision.[36] This committee recognized that the chosen mode was an important part of the launch vehicle choice, and recommended in favor of a hybrid EOR-LOR mode. Its consideration of LOR—as well as Houbolt's ceaseless work—played an important role in publicizing the workability of the approach. In late 1961 and early 1962, members of the Manned Spacecraft
Spacecraft
Center began to come around to support LOR, including the newly hired deputy director of the Office of Manned Space Flight, Joseph Shea, who became a champion of LOR.[37] The engineers at Marshall Space Flight Center (MSFC), which had much to lose from the decision, took longer to become convinced of its merits, but their conversion was announced by Wernher von Braun
Wernher von Braun
at a briefing on June 7, 1962.[38] But even after NASA
NASA
reached internal agreement, it was far from smooth sailing. Kennedy's science advisor Jerome Wiesner, who had expressed his opposition to manned spaceflight to Kennedy before the President took office,[39] and had opposed the decision to land men on the Moon, hired Golovin, who had left NASA, to chair his own "Space Vehicle Panel", ostensibly to monitor, but actually to second-guess NASA's decisions on the Saturn V
Saturn V
launch vehicle and LOR by forcing Shea, Seamans, and even Webb to defend themselves, delaying its formal announcement to the press on July 11, 1962, and forcing Webb to still hedge the decision as "tentative".[40] Wiesner kept up the pressure, even making the disagreement public during a two-day September visit by the President to Marshall Space Flight Center. Wiesner blurted out "No, that's no good" in front of the press, during a presentation by von Braun. Webb jumped in and defended von Braun, until Kennedy ended the squabble by stating that the matter was "still subject to final review". Webb held firm, and issued a request for proposal to candidate Lunar Excursion Module (LEM) contractors. Wiesner finally relented, unwilling to settle the dispute once and for all in Kennedy's office, because of the President's involvement with the October Cuban Missile Crisis, and fear of Kennedy's support for Webb. NASA
NASA
announced the selection of Grumman
Grumman
as the LEM contractor in November 1962.[41] Space historian James Hansen concludes that:

Without NASA's adoption of this stubbornly held minority opinion in 1962, the United States
United States
may still have reached the Moon, but almost certainly it would not have been accomplished by the end of the 1960s, President Kennedy's target date.[42]

An Apollo
Apollo
Test Capsule is on exhibit in the Meteor Crater Visitor Center in Winslow, Arizona.

The LOR method had the advantage of allowing the lander spacecraft to be used as a "lifeboat" in the event of a failure of the command ship. Some documents prove this theory was discussed before and after the method was chosen. A 1964 MSC study concluded, "The LM [as lifeboat] ... was finally dropped, because no single reasonable CSM failure could be identified that would prohibit use of the SPS."[43] Ironically, just such a failure happened on Apollo 13
Apollo 13
when an oxygen tank explosion left the CSM without electrical power. The Lunar Module provided propulsion, electrical power and life support to get the crew home safely.[44] Spacecraft[edit] Main article: Apollo
Apollo
(spacecraft) Faget's preliminary Apollo
Apollo
design employed a cone-shaped command module, supported by one of several service modules providing propulsion and electrical power, sized appropriately for the space station, cislunar, and lunar landing missions. Once Kennedy's Moon landing goal became official, detailed design began of a Command/Service Module (CSM) in which the crew would spend the entire direct-ascent mission and lift off from the lunar surface for the return trip, after being soft-landed by a larger landing propulsion module. The final choice of lunar orbit rendezvous changed the CSM's role to the translunar ferry used to transport the crew, along with a new spacecraft, the Lunar Excursion Module (LEM, later shortened to Lunar Module, LM) which would take two men to the lunar surface and return them to the CSM.[45] Command/Service Module[edit] Main article: Apollo
Apollo
Command/Service Module

Apollo
Apollo
15 CSM in lunar orbit

The Command Module (CM) was the conical crew cabin, designed to carry three astronauts from launch to lunar orbit and back to an Earth ocean landing. It was the only component of the Apollo
Apollo
spacecraft to survive without major configuration changes as the program evolved from the early Apollo
Apollo
study designs. Its exterior was covered with an ablative heat shield, and had its own reaction control system (RCS) engines to control its attitude and steer its atmospheric entry path. Parachutes were carried to slow its descent to splashdown. The module was 11.42 feet (3.48 m) tall, 12.83 feet (3.91 m) in diameter, and weighed approximately 12,250 pounds (5,560 kg).[46] A cylindrical Service Module (SM) supported the Command Module, with a service propulsion engine and an RCS with propellants, and a fuel cell power generation system with liquid hydrogen and liquid oxygen reactants. A high-gain S-band antenna was used for long-distance communications on the lunar flights. On the extended lunar missions, an orbital scientific instrument package was carried. The Service Module was discarded just before re-entry. The module was 24.6 feet (7.5 m) long and 12.83 feet (3.91 m) in diameter. The initial lunar flight version weighed approximately 51,300 pounds (23,300 kg) fully fueled, while a later version designed to carry a lunar orbit scientific instrument package weighed just over 54,000 pounds (24,000 kg).[46] North American Aviation
North American Aviation
won the contract to build the CSM, and also the second stage of the Saturn V
Saturn V
launch vehicle for NASA. Because the CSM design was started early before the selection of lunar orbit rendezvous, the service propulsion engine was sized to lift the CSM off the Moon, and thus was oversized to about twice the thrust required for translunar flight.[47] Also, there was no provision for docking with the Lunar Module. A 1964 program definition study concluded that the initial design should be continued as Block I which would be used for early testing, while Block II, the actual lunar spacecraft, would incorporate the docking equipment and take advantage of the lessons learned in Block I development.[45] Lunar Module[edit] Main article: Apollo
Apollo
Lunar Module

Apollo
Apollo
16 LM on the Moon

The Lunar Module (LM) was designed to descend from lunar orbit to land two astronauts on the Moon
Moon
and take them back to orbit to rendezvous with the Command Module. Not designed to fly through the Earth's atmosphere or return to Earth, its fuselage was designed totally without aerodynamic considerations, and was of an extremely lightweight construction. It consisted of separate descent and ascent stages, each with its own engine. The descent stage contained storage for the descent propellant, surface stay consumables, and surface exploration equipment. The ascent stage contained the crew cabin, ascent propellant, and a reaction control system. The initial LM model weighed approximately 33,300 pounds (15,100 kg), and allowed surface stays up to around 34 hours. An Extended Lunar Module weighed over 36,200 pounds (16,400 kg), and allowed surface stays of over 3 days.[46] The contract for design and construction of the Lunar Module was awarded to Grumman
Grumman
Aircraft Engineering Corporation, and the project was overseen by Thomas J. Kelly.[48] Launch vehicles[edit]

Four Apollo
Apollo
rocket assemblies, drawn to scale: Little Joe II, Saturn I, Saturn IB, and Saturn V

Before the Apollo
Apollo
program began, Wernher von Braun
Wernher von Braun
and his team of rocket engineers had started work on plans for very large launch vehicles, the Saturn series, and the even larger Nova series. In the midst of these plans, von Braun was transferred from the Army to NASA, and made Director of the Marshall Space Flight Center. The initial direct ascent plan to send the three-man Apollo
Apollo
Command/Service Module directly to the lunar surface, on top of a large descent rocket stage, would require a Nova-class launcher, with a lunar payload capability of over 180,000 pounds (82,000 kg).[49] The June 11, 1962, decision to use lunar orbit rendezvous enabled the Saturn V
Saturn V
to replace the Nova, and the MSFC proceeded to develop the Saturn rocket family for Apollo.[50] Little Joe II[edit] Main article: Little Joe II Since Apollo, like Mercury, would require a launch escape system (LES) in case of a launch failure, a relatively small rocket was required for qualification flight testing of this system. A size bigger than the NAA Little Joe would be required, so the Little Joe II
Little Joe II
was built by General Dynamics/Convair. After an August 1963 qualification test flight,[51] four LES test flights ( A-001
A-001
through 004) were made at the White Sands Missile Range
White Sands Missile Range
between May 1964 and January 1966.[52] Saturn I[edit] Main article: Saturn I

A Saturn IB
Saturn IB
rocket launches Apollo
Apollo
7, 1968

Since Apollo, like Mercury, used more than one launch vehicle for space missions, NASA
NASA
used spacecraft-launch vehicle combination series numbers: AS-10x for Saturn I, AS-20x for Saturn IB, and AS-50x for Saturn V
Saturn V
(compare Mercury-Redstone 3, Mercury-Atlas 6) to designate and plan all missions, rather than numbering them sequentially as in Project Gemini. This was changed by the time manned flights began.[53] Saturn I, the first US heavy lift launch vehicle, was initially planned to launch partially equipped CSMs in low Earth orbit tests. The S-I
S-I
first stage burned RP-1
RP-1
with liquid oxygen (LOX) oxidizer in eight clustered Rocketdyne H-1
Rocketdyne H-1
engines, to produce 1,500,000 pounds-force (6,670 kN) of thrust. The S-IV
S-IV
second stage used six liquid hydrogen-fueled Pratt & Whitney RL-10
RL-10
engines with 90,000 pounds-force (400 kN) of thrust. A planned Centaur (S-V) third stage with two RL-10
RL-10
engines never flew on Saturn I.[54] The first four Saturn I
Saturn I
test flights were launched from LC-34, with only live first stages, carrying dummy upper stages filled with water. The first flight with a live S-IV
S-IV
was launched from LC-37. This was followed by five launches of boilerplate CSMs (designated AS-101 through AS-105) into orbit in 1964 and 1965. The last three of these further supported the Apollo
Apollo
program by also carrying Pegasus satellites, which verified the safety of the translunar environment by measuring the frequency and severity of micrometeorite impacts.[55] In September 1962, NASA
NASA
planned to launch four manned CSM flights on the Saturn I
Saturn I
from late 1965 through 1966, concurrent with Project Gemini. The 22,500-pound (10,200 kg) payload capacity[56] would have severely limited the systems which could be included, so the decision was made in October 1963 to use the uprated Saturn IB
Saturn IB
for all manned Earth orbital flights.[57] Saturn IB[edit] Main article: Saturn IB The Saturn IB
Saturn IB
was an upgraded version of the Saturn I. The S-IB
S-IB
first stage increased the thrust to 1,600,000 pounds-force (7,120 kN) by uprating the H-1 engine. The second stage replaced the S-IV
S-IV
with the S-IVB-200, powered by a single J-2 engine burning liquid hydrogen fuel with LOX, to produce 200,000 pounds-force (890 kN) of thrust.[58] A restartable version of the S-IVB
S-IVB
was used as the third stage of the Saturn V. The Saturn IB
Saturn IB
could send over 40,000 pounds (18,100 kg) into low Earth orbit, sufficient for a partially fueled CSM or the LM.[59] Saturn IB
Saturn IB
launch vehicles and flights were designated with an AS-200 series number, "AS" indicating "Apollo Saturn" and the "2" indicating the second member of the Saturn rocket family.[60] Saturn V[edit] Main article: Saturn V

A Saturn V
Saturn V
launches Apollo 11
Apollo 11
in 1969

Saturn V
Saturn V
launch vehicles and flights were designated with an AS-500 series number, "AS" indicating " Apollo
Apollo
Saturn" and the "5" indicating Saturn V.[60] The three-stage Saturn V
Saturn V
was designed to send a fully fueled CSM and LM to the Moon. It was 33 feet (10.1 m) in diameter and stood 363 feet (110.6 m) tall with its 96,800-pound (43,900 kg) lunar payload. Its capability grew to 103,600 pounds (47,000 kg) for the later advanced lunar landings. The S-IC
S-IC
first stage burned RP-1/LOX for a rated thrust of 7,500,000 pounds-force (33,400 kN), which was upgraded to 7,610,000 pounds-force (33,900 kN). The second and third stages burned liquid hydrogen, and the third stage was a modified version of the S-IVB, with thrust increased to 230,000 pounds-force (1,020 kN) and capability to restart the engine for translunar injection after reaching a parking orbit.[61] Astronauts[edit] Main article: List of Apollo
Apollo
astronauts

Apollo 1
Apollo 1
crew: Ed White, command pilot Gus Grissom, and Roger Chaffee

NASA's Director of Flight Crew Operations during the Apollo
Apollo
program was Donald K. "Deke" Slayton, one of the original Mercury Seven astronauts who was medically grounded in September 1962 due to a heart murmur. Slayton was responsible for making all Gemini and Apollo
Apollo
crew assignments.[62]

Apollo 11
Apollo 11
crew, who made the first manned landing: commander Neil Armstrong, CM pilot Michael Collins, and LM pilot Buzz Aldrin

Thirty-two astronauts were assigned to fly missions in the Apollo program. Twenty-four of these left Earth's orbit and flew around the Moon
Moon
between December 1968 and December 1972 (three of them twice). Half of the 24 walked on the Moon's surface, though none of them returned to it after landing once. One of the moonwalkers was a trained geologist. Of the 32, Gus Grissom, Ed White, and Roger Chaffee were killed during a ground test in preparation for the Apollo
Apollo
1 mission.[53] The Apollo
Apollo
astronauts were chosen from the Project Mercury
Project Mercury
and Gemini veterans, plus from two later astronaut groups. All missions were commanded by Gemini or Mercury veterans. Crews on all development flights (except the Earth orbit CSM development flights) through the first two landings on Apollo 11
Apollo 11
and Apollo
Apollo
12, included at least two (sometimes three) Gemini veterans. Dr. Harrison Schmitt, a geologist, was the first NASA
NASA
scientist astronaut to fly in space, and landed on the Moon
Moon
on the last mission, Apollo
Apollo
17. Schmitt participated in the lunar geology training of all of the Apollo
Apollo
landing crews.[63] NASA
NASA
awarded all 32 of these astronauts its highest honor, the Distinguished Service Medal, given for "distinguished service, ability, or courage", and personal "contribution representing substantial progress to the NASA
NASA
mission". The medals were awarded posthumously to Grissom, White, and Chaffee in 1969, then to the crews of all missions from Apollo 8
Apollo 8
onward. The crew that flew the first Earth orbital test mission Apollo
Apollo
7, Walter M. Schirra, Donn Eisele, and Walter Cunningham, were awarded the lesser NASA
NASA
Exceptional Service Medal, because of discipline problems with the Flight Director's orders during their flight. The NASA
NASA
Administrator in October, 2008, decided to award them the Distinguished Service Medals, by this time posthumously to Schirra and Eisele.[64] Lunar mission profile[edit] The nominal planned lunar landing mission proceeded as follows:[65]

Launch The 3 Saturn V
Saturn V
stages burn for about 11 minutes to achieve a 100-nautical-mile (190 km) circular parking orbit. The third stage burns a small portion of its fuel to achieve orbit.

Translunar injection After one to two orbits to verify readiness of spacecraft systems, the S-IVB
S-IVB
third stage reignites for about 6 minutes to send the spacecraft to the Moon.

Transposition and docking (1) The Spacecraft
Spacecraft
Lunar Module Adapter (SLA) panels separate to free the CSM and expose the LM. The Command Module Pilot (CMP) moves the CSM out a safe distance, and turns 180°.

Transposition and docking (2), The CMP docks with the LM, and pulls the combined spacecraft away from the S-IVB, which then is sent into solar orbit. The lunar voyage takes between 2 and 3 days. Midcourse corrections are made as necessary using the SM engine.

Lunar orbit
Lunar orbit
insertion The spacecraft passes about 60 nautical miles (110 km) behind the Moon, and the SM engine is fired to slow the spacecraft and put it into a 60-by-170-nautical-mile (110 by 310 km) orbit, which is soon circularized at 60 nautical miles by a second burn.

After a rest period, the Commander (CDR) and Lunar Module Pilot (LMP) move to the LM, power up its systems, and deploy the landing gear. The CSM and LM separate; the CMP visually inspects the LM, then the LM crew move a safe distance away and fire the descent engine for Descent orbit insertion, which takes it to a perilune of about 50,000 feet (15 km).

Powered descent At perilune, the descent engine fires again to start the descent. The CDR takes over manual control after pitchover for a vertical landing.

The CDR and LMP perform one or more EVAs exploring the lunar surface and collecting samples, alternating with rest periods.

The ascent stage lifts off, using the descent stage as a launching pad.

The LM rendezvouses and docks with the CSM.

The CDR and LMP transfer back to the CM with their material samples, then the LM ascent stage is jettisoned, to eventually fall out of orbit and crash on the surface.

Trans-Earth injection The SM engine fires to send the CSM back to Earth.

The SM is jettisoned just before reentry, and the CM turns 180° to face its blunt end forward for reentry.

Atmospheric drag slows the CM. Aerodynamic heating surrounds it with an envelope of ionized air which causes a communications blackout for several minutes.

Parachutes are deployed, slowing the CM for a splashdown in the Pacific Ocean. The astronauts are recovered and brought to an aircraft carrier.

Lunar flight profile (distances not to scale).

Profile variations[edit]

Starting with Apollo
Apollo
13, descent orbit insertion was to be performed using the Service Module engine instead of the LM engine, in order to allow a greater fuel reserve for landing. This was actually done for the first time on Apollo
Apollo
14, since the Apollo 13
Apollo 13
mission was aborted before landing.[66] The first three lunar missions ( Apollo
Apollo
8, Apollo
Apollo
10, and Apollo
Apollo
11) used a free return trajectory, keeping a flight path coplanar with the lunar orbit, which would allow a return to Earth in case the SM engine failed to make lunar orbit insertion. Landing site lighting conditions on later missions dictated a lunar orbital plane change, which required a course change maneuver soon after TLI, and eliminated the free-return option.[67] After Apollo
Apollo
12 placed the second of several seismometers on the Moon,[68] the S-IVBs on subsequent missions were deliberately crashed on the Moon
Moon
instead of being sent to solar orbit, as an active seismic experiment to induce vibrations in the Moon.[69] As another active seismic experiment, the jettisoned LM ascent stages on Apollo
Apollo
12 and later missions were deliberately crashed on the Moon at known locations. The only exceptions to this were the Apollo 13
Apollo 13
LM which burned up in the Earth's atmosphere, and Apollo
Apollo
16, where a loss of attitude control after jettison prevented making a targeted impact.[70]

Development history[edit] Unmanned flight tests[edit]

Apollo
Apollo
unmanned development mission launches. Click on a launch image to read the main article about each mission

See also: List of Apollo
Apollo
missions Two Block I CSMs were launched from LC-34 on suborbital flights in 1966 with the Saturn IB. The first, AS-201
AS-201
launched on February 26, reached an altitude of 265.7 nautical miles (492.1 km) and splashed down 4,577 nautical miles (8,477 km) downrange in the Atlantic Ocean.[71] The second, AS-202
AS-202
on August 25, reached 617.1 nautical miles (1,142.9 km) altitude and was recovered 13,900 nautical miles (25,700 km) downrange in the Pacific Ocean. These flights validated the Service Module engine and the Command Module heat shield.[72] A third Saturn IB
Saturn IB
test, AS-203
AS-203
launched from pad 37, went into orbit to support design of the S-IVB
S-IVB
upper stage restart capability needed for the Saturn V. It carried a nosecone instead of the Apollo spacecraft, and its payload was the unburned liquid hydrogen fuel, the behavior of which engineers measured with temperature and pressure sensors, and a TV camera. This flight occurred on July 5, before AS-202, which was delayed because of problems getting the Apollo spacecraft ready for flight.[73] Preparation for manned flight[edit] Two manned orbital Block I CSM missions were planned: AS-204 and AS-205. The Block I crew positions were titled Command Pilot, Senior Pilot, and Pilot. The Senior Pilot would assume navigation duties, while the Pilot would function as a systems engineer.[74] The astronauts would wear a modified version of the Gemini spacesuit.[75] After an unmanned LM test flight AS-206, a crew would fly the first Block II CSM and LM in a dual mission known as AS-207/208, or AS-278 (each spacecraft would be launched on a separate Saturn IB).[76] The Block II crew positions were titled Commander (CDR) Command Module Pilot (CMP) and Lunar Module Pilot (LMP). The astronauts would begin wearing a new Apollo
Apollo
A6L spacesuit, designed to accommodate lunar extravehicular activity (EVA). The traditional visor helmet was replaced with a clear "fishbowl" type for greater visibility, and the lunar surface EVA suit would include a water-cooled undergarment.[77] Deke Slayton, the grounded Mercury astronaut who became Director of Flight Crew Operations for the Gemini and Apollo
Apollo
programs, selected the first Apollo
Apollo
crew in January 1966, with Grissom as Command Pilot, White as Senior Pilot, and rookie Donn F. Eisele
Donn F. Eisele
as Pilot. But Eisele dislocated his shoulder twice aboard the KC135 weightlessness training aircraft, and had to undergo surgery on January 27. Slayton replaced him with Chaffee.[78] NASA
NASA
announced the final crew selection for AS-204 on March 21, 1966, with the backup crew consisting of Gemini veterans James McDivitt
James McDivitt
and David Scott, with rookie Russell L. "Rusty" Schweickart. Mercury/Gemini veteran Wally Schirra, Eisele, and rookie Walter Cunningham
Walter Cunningham
were announced on September 29 as the prime crew for AS-205.[78] In December 1966, the AS-205 mission was canceled, since the validation of the CSM would be accomplished on the 14-day first flight, and AS-205 would have been devoted to space experiments and contribute no new engineering knowledge about the spacecraft. Its Saturn IB
Saturn IB
was allocated to the dual mission, now redesignated AS-205/208 or AS-258, planned for August 1967. McDivitt, Scott and Schweickart were promoted to the prime AS-258 crew, and Schirra, Eisele and Cunningham were reassigned as the Apollo 1
Apollo 1
backup crew.[79] Program delays[edit] The spacecraft for the AS-202
AS-202
and AS-204 missions were delivered by North American Aviation
North American Aviation
to the Kennedy Space Center
Kennedy Space Center
with long lists of equipment problems which had to be corrected before flight; these delays caused the launch of AS-202
AS-202
to slip behind AS-203, and eliminated hopes the first manned mission might be ready to launch as soon as November 1966, concurrently with the last Gemini mission. Eventually the planned AS-204 flight date was pushed to February 21, 1967.[80] North American Aviation
North American Aviation
was prime contractor not only for the Apollo CSM, but for the Saturn V
Saturn V
S-II
S-II
second stage as well, and delays in this stage pushed the first unmanned Saturn V
Saturn V
flight AS-501 from late 1966 to November 1967. (The initial assembly of AS-501 had to use a dummy spacer spool in place of the stage.)[81] The problems with North American were severe enough in late 1965 to cause Manned Space Flight Administrator George Mueller to appoint program director Samuel Phillips to head a "tiger team" to investigate North American's problems and identify corrections. Phillips documented his findings in a December 19 letter to NAA president Lee Atwood, with a strongly worded letter by Mueller, and also gave a presentation of the results to Mueller and Deputy Administrator Robert Seamans.[82] Meanwhile, Grumman
Grumman
was also encountering problems with the Lunar Module, eliminating hopes it would be ready for manned flight in 1967, not long after the first manned CSM flights.[83] Apollo 1
Apollo 1
fire[edit] Main article: Apollo
Apollo
1

Charred Apollo 1
Apollo 1
cabin interior

Grissom, White, and Chaffee decided to name their flight Apollo 1
Apollo 1
as a motivational focus on the first manned flight. They trained and conducted tests of their spacecraft at North American, and in the altitude chamber at the Kennedy Space Center. A "plugs-out" test was planned for January, which would simulate a launch countdown on LC-34 with the spacecraft transferring from pad-supplied to internal power. If successful, this would be followed by a more rigorous countdown simulation test closer to the February 21 launch, with both spacecraft and launch vehicle fueled.[84] The plugs-out test began on the morning of January 27, 1967, and immediately was plagued with problems. First the crew noticed a strange odor in their spacesuits, which delayed the sealing of the hatch. Then, communications problems frustrated the astronauts and forced a hold in the simulated countdown. During this hold, an electrical fire began in the cabin, and spread quickly in the high pressure, 100% oxygen atmosphere. Pressure rose high enough from the fire that the cabin inner wall burst, allowing the fire to erupt onto the pad area and frustrating attempts to rescue the crew. The astronauts were asphyxiated before the hatch could be opened.[85] NASA
NASA
immediately convened an accident review board, overseen by both houses of Congress. While the determination of responsibility for the accident was complex, the review board concluded that "deficiencies existed in Command Module design, workmanship and quality control."[85] At the insistence of NASA
NASA
Administrator Webb, North American removed Harrison Storms
Harrison Storms
as Command Module program manager.[86] Webb also reassigned Apollo
Apollo
Spacecraft
Spacecraft
Program Office (ASPO) Manager Joseph Francis Shea, replacing him with George Low.[87]

The Block II spacesuit in January 1968, before (left) and after changes recommended after the Apollo 1
Apollo 1
fire

To remedy the causes of the fire, changes were made in the Block II spacecraft and operational procedures, the most important of which were use of a nitrogen/oxygen mixture instead of pure oxygen before and during launch, and removal of flammable cabin and space suit materials.[88] The Block II design already called for replacement of the Block I plug-type hatch cover with a quick-release, outward opening door.[88] NASA
NASA
discontinued the manned Block I program, using the Block I spacecraft only for unmanned Saturn V
Saturn V
flights. Crew members would also exclusively wear modified, fire-resistant A7L Block II space suits, and would be designated by the Block II titles, regardless of whether a LM was present on the flight or not.[77] Unmanned Saturn V
Saturn V
and LM tests[edit] On April 24, 1967, Mueller published an official Apollo
Apollo
mission numbering scheme, using sequential numbers for all flights, manned or unmanned. The sequence would start with Apollo
Apollo
4 to cover the first three unmanned flights while retiring the Apollo 1
Apollo 1
designation to honor the crew, per their widows' wishes.[53][89] In September 1967, Mueller approved a sequence of mission types which had to be successfully accomplished in order to achieve the manned lunar landing. Each step had to be successfully accomplished before the next ones could be performed, and it was unknown how many tries of each mission would be necessary; therefore letters were used instead of numbers. The A missions were unmanned Saturn V
Saturn V
validation; B was unmanned LM validation using the Saturn IB; C was manned CSM Earth orbit validation using the Saturn IB; D was the first manned CSM/LM flight (this replaced AS-258, using a single Saturn V
Saturn V
launch); E would be a higher Earth orbit CSM/LM flight; F would be the first lunar mission, testing the LM in lunar orbit but without landing (a "dress rehearsal"); and G would be the first manned landing. The list of types covered follow-on lunar exploration to include H lunar landings, I for lunar orbital survey missions, and J for extended-stay lunar landings.[90] The delay in the CSM caused by the fire enabled NASA
NASA
to catch up on man-rating the LM and Saturn V. Apollo
Apollo
4 (AS-501) was the first unmanned flight of the Saturn V, carrying a Block I CSM on November 9, 1967. The capability of the Command Module's heat shield to survive a trans-lunar reentry was demonstrated by using the Service Module engine to ram it into the atmosphere at higher than the usual Earth-orbital reentry speed. Apollo
Apollo
5 (AS-204) was the first unmanned test flight of LM in Earth orbit, launched from pad 37 on January 22, 1968, by the Saturn IB
Saturn IB
that would have been used for Apollo
Apollo
1. The LM engines were successfully test-fired and restarted, despite a computer programming error which cut short the first descent stage firing. The ascent engine was fired in abort mode, known as a "fire-in-the-hole" test, where it was lit simultaneously with jettison of the descent stage. Although Grumman wanted a second unmanned test, George Low
George Low
decided the next LM flight would be manned.[91] This was followed on April 4, 1968, by Apollo 6
Apollo 6
(AS-502) which carried a CSM and a LM Test Article as ballast. The intent of this mission was to achieve trans-lunar injection, followed closely by a simulated direct-return abort, using the Service Module engine to achieve another high-speed reentry. The Saturn V
Saturn V
experienced pogo oscillation, a problem caused by non-steady engine combustion, which damaged fuel lines in the second and third stages. Two S-II
S-II
engines shut down prematurely, but the remaining engines were able to compensate. The damage to the third stage engine was more severe, preventing it from restarting for trans-lunar injection. Mission controllers were able to use the Service Module engine to essentially repeat the flight profile of Apollo
Apollo
4. Based on the good performance of Apollo 6
Apollo 6
and identification of satisfactory fixes to the Apollo 6
Apollo 6
problems, NASA declared the Saturn V
Saturn V
ready to fly men, cancelling a third unmanned test.[92] Manned development missions[edit]

Apollo
Apollo
manned development mission patches. Click on a patch to read the main article about that mission

Apollo
Apollo
7, launched from LC-34 on October 11, 1968, was the C mission, crewed by Schirra, Eisele and Cunningham. It was an 11-day Earth-orbital flight which tested the CSM systems.[93] Apollo 8
Apollo 8
was planned to be the D mission in December 1968, crewed by McDivitt, Scott and Schweickart, launched on a Saturn V
Saturn V
instead of two Saturn IBs.[94] In the summer it had become clear that the LM would not be ready in time. Rather than waste the Saturn V
Saturn V
on another simple Earth-orbiting mission, ASPO Manager George Low
George Low
suggested the bold step of sending Apollo 8
Apollo 8
to orbit the Moon
Moon
instead, deferring the D mission to the next mission in March 1969, and eliminating the E mission. This would keep the program on track. The Soviet Union
Soviet Union
had sent two tortoises, mealworms, wine flies, and other lifeforms around the Moon
Moon
on September 15, 1968, aboard Zond 5, and it was believed they might soon repeat the feat with human cosmonauts.[95][96] The decision was not announced publicly until successful completion of Apollo
Apollo
7. Gemini veterans Frank Borman
Frank Borman
and Jim Lovell, and rookie William Anders
William Anders
captured the world's attention by making ten lunar orbits in 20 hours, transmitting television pictures of the lunar surface on Christmas Eve, and returning safely to Earth.[97] The following March, LM flight, rendezvous and docking were successfully demonstrated in Earth orbit on Apollo
Apollo
9, and Schweickart tested the full lunar EVA suit with its Portable Life Support System (PLSS) outside the LM.[98] The F mission was successfully carried out on Apollo
Apollo
10 in May 1969 by Gemini veterans Thomas P. Stafford, John Young and Eugene Cernan. Stafford and Cernan took the LM to within 50,000 feet (15 km) of the lunar surface.[99]

Neil Armstrong
Neil Armstrong
descends the LM's ladder in preparation for the first steps on the lunar surface, as televised live on July 20, 1969

The G mission was achieved on Apollo 11
Apollo 11
in July 1969 by an all-Gemini veteran crew consisting of Neil Armstrong, Michael Collins and Buzz Aldrin. Armstrong and Aldrin performed the first landing at the Sea of Tranquility at 20:17:40 UTC
UTC
on July 20, 1969. They spent a total of 21 hours, 36 minutes on the surface, and spent 2 hours, 31 minutes outside the spacecraft,[100] walking on the surface, taking photographs, collecting material samples, and deploying automated scientific instruments, while continuously sending black-and-white television back to Earth. The astronauts returned safely on July 24.[101]

That's one small step for [a] man, one giant leap for mankind. — Neil Armstrong, just after stepping onto the Moon's surface[102]

Production lunar landings[edit]

Apollo
Apollo
production manned lunar landing mission patches. Click on a patch to read the main article about that mission

Apollo
Apollo
landings on the Moon, 1969–1972

In November 1969, Gemini veteran Charles "Pete" Conrad and rookie Alan L. Bean made a precision landing on Apollo
Apollo
12 within walking distance of the Surveyor 3
Surveyor 3
unmanned lunar probe, which had landed in April 1967 on the Ocean of Storms. The Command Module Pilot was Gemini veteran Richard F. Gordon Jr.
Richard F. Gordon Jr.
Conrad and Bean carried the first lunar surface color television camera, but it was damaged when accidentally pointed into the Sun. They made two EVAs totaling 7 hours and 45 minutes.[100] On one, they walked to the Surveyor, photographed it, and removed some parts which they returned to Earth.[103] The success of the first two landings allowed the remaining missions to be crewed with a single veteran as Commander, with two rookies. Apollo 13
Apollo 13
launched Lovell, Jack Swigert, and Fred Haise
Fred Haise
in April 1970, headed for the Fra Mauro formation. But two days out, a liquid oxygen tank exploded, disabling the Service Module and forcing the crew to use the LM as a "life boat" to return to Earth. Another NASA
NASA
review board was convened to determine the cause, which turned out to be a combination of damage of the tank in the factory, and a subcontractor not making a tank component according to updated design specifications.[44] Apollo
Apollo
was grounded again, for the remainder of 1970 while the oxygen tank was redesigned and an extra one was added.[104] The contracted batch of 15 Saturn Vs were enough for lunar landing missions through Apollo
Apollo
20. NASA
NASA
publicized a preliminary list of eight more planned landing sites, with plans to increase the mass of the CSM and LM for the last five missions, along with the payload capacity of the Saturn V. These final missions would combine the I and J types in the 1967 list, allowing the CMP to operate a package of lunar orbital sensors and cameras while his companions were on the surface, and allowing them to stay on the Moon
Moon
for over three days. These missions would also carry the Lunar Roving Vehicle
Lunar Roving Vehicle
(LRV) increasing the exploration area and allowing televised liftoff of the LM. Also, the Block II spacesuit was revised for the extended missions to allow greater flexibility and visibility for driving the LRV.[105] Mission cutbacks[edit] Main article: Canceled Apollo
Apollo
missions About the time of the first landing in 1969, it was decided to use an existing Saturn V
Saturn V
to launch the Skylab
Skylab
orbital laboratory pre-built on the ground, replacing the original plan to construct it in orbit from several Saturn IB
Saturn IB
launches; this eliminated Apollo
Apollo
20. NASA's yearly budget also began to shrink in light of the successful landing, and NASA
NASA
also had to make funds available for the development of the upcoming Space Shuttle. By 1971, the decision was made to also cancel missions 18 and 19.[106] The two unused Saturn Vs became museum exhibits at the John F. Kennedy
John F. Kennedy
Space Center on Merritt Island, Florida, George C. Marshall Space Center in Huntsville, Alabama, Michoud Assembly Facility
Michoud Assembly Facility
in New Orleans, Louisiana, and Lyndon B. Johnson Space Center
Johnson Space Center
in Houston, Texas.[107] The cutbacks forced mission planners to reassess the original planned landing sites in order to achieve the most effective geological sample and data collection from the remaining four missions. Apollo
Apollo
15 had been planned to be the last of the H series missions, but since there would be only two subsequent missions left, it was changed to the first of three J missions.[108] Apollo
Apollo
13's Fra Mauro mission was reassigned to Apollo
Apollo
14, commanded in February 1971 by Mercury veteran Alan Shepard, with Stuart Roosa and Edgar Mitchell.[109] This time the mission was successful. Shepard and Mitchell spent 33 hours and 31 minutes on the surface,[110] and completed two EVAs totalling 9 hours 24 minutes, which was a record for the longest EVA by a lunar crew at the time.[109] In August 1971, just after conclusion of the Apollo
Apollo
15 mission, President Richard Nixon
Richard Nixon
proposed canceling the two remaining lunar landing missions, Apollo
Apollo
16 and 17. Office of Management and Budget Deputy Director Caspar Weinberger
Caspar Weinberger
was opposed to this, and persuaded Nixon to keep the remaining missions.[111] Extended missions[edit]

Lunar Roving Vehicle
Lunar Roving Vehicle
used on Apollos 15–17

Plaque left on the Moon
Moon
by Apollo
Apollo
17

Apollo
Apollo
15 was launched on July 26, 1971, with David Scott, Alfred Worden and James Irwin. Scott and Irwin landed on July 30 near Hadley Rille, and spent just under two days, 19 hours on the surface. In over 18 hours of EVA, they collected about 77 kilograms (170 lb) of lunar material.[112] Apollo
Apollo
16 landed in the Descartes Highlands
Descartes Highlands
on April 20, 1972. The crew was commanded by John Young, with Ken Mattingly
Ken Mattingly
and Charles Duke. Young and Duke spent just under three days on the surface, with a total of over 20 hours EVA.[113] Apollo 17
Apollo 17
was the last of the Apollo
Apollo
program, landing in the Taurus-Littrow
Taurus-Littrow
region in December 1972. Eugene Cernan
Eugene Cernan
commanded Ronald E. Evans and NASA's first scientist-astronaut, geologist Dr. Harrison H. Schmitt.[114] Schmitt was originally scheduled for Apollo
Apollo
18,[115] but the lunar geological community lobbied for his inclusion on the final lunar landing.[116] Cernan and Schmitt stayed on the surface for just over three days and spent just over 23 hours of total EVA.[114]

Mission summary[edit] Main article: List of Apollo
Apollo
missions

Designation Date Launch vehicle CSM LM Crew Summary

AS-201 Feb 26, 1966 AS-201 CSM-009 None None First flight of Saturn IB
Saturn IB
and Block I CSM; suborbital to Atlantic Ocean; qualified heat shield to orbital reentry speed.

AS-203 Jul 5, 1966 AS-203 None None None No spacecraft; observations of liquid hydrogen fuel behavior in orbit, to support design of S-IVB
S-IVB
restart capability.

AS-202 Aug 25, 1966 AS-202 CSM-011 None None Suborbital flight of CSM to Pacific Ocean.

Apollo
Apollo
1 Feb 21, 1967 AS-204 CSM-012 None Gus Grissom Ed White Roger B. Chaffee Not flown; all crew members perished in fire on launch pad on January 27, 1967.

Apollo
Apollo
4 Nov 9, 1967 AS-501 CSM-017 LTA-10R None First test flight of Saturn V, placed a CSM in a high Earth orbit; demonstrated S-IVB
S-IVB
restart; qualified CM heat shield to lunar reentry speed.

Apollo
Apollo
5 Jan 22–23, 1968 AS-204 None LM-1 None Earth orbital flight test of LM, launched on Saturn IB; demonstrated ascent and descent propulsion; man-rated the LM.

Apollo
Apollo
6 Apr 4, 1968 AS-502 CM-020 SM-014 LTA-2R None Unmanned, attempted demonstration of trans-lunar injection, and direct-return abort using SM engine; three engine failures, including failure of S-IVB
S-IVB
restart. Flight controllers used SM engine to repeat Apollo
Apollo
4's flight profile. Man-rated the Saturn V.

Apollo
Apollo
7 Oct 11–22, 1968 AS-205 CSM-101 None Wally Schirra Walt Cunningham Donn Eisele First manned Earth orbital demonstration of Block II CSM, launched on Saturn IB. First live television publicly broadcast from a manned mission.

Apollo
Apollo
8 Dec 21–27, 1968 AS-503 CSM-103 LTA-B Frank Borman James Lovell William Anders First manned flight to Moon; CSM made 10 lunar orbits in 20 hours.

Apollo
Apollo
9 Mar 3–13, 1969 AS-504 CSM-104 Gumdrop LM-3 Spider James McDivitt David Scott Russell Schweickart First manned flight of CSM and LM in Earth orbit; demonstrated Portable Life Support System to be used on the lunar surface.

Apollo
Apollo
10 May 18–26, 1969 AS-505 CSM-106 Charlie Brown LM-4 Snoopy Thomas Stafford John Young Eugene Cernan Dress rehearsal for first lunar landing; flew LM down to 50,000 feet (15 km) from lunar surface.

Apollo
Apollo
11 Jul 16–24, 1969 AS-506 CSM-107 Columbia LM-5 Eagle Neil Armstrong Michael Collins Buzz Aldrin First manned landing, in Tranquility Base, Sea of Tranquility. Surface EVA time: 2:31 hr. Samples returned: 47.51 pounds (21.55 kg).

Apollo
Apollo
12 Nov 14–24, 1969 AS-507 CSM-108 Yankee Clipper LM-6 Intrepid C. "Pete" Conrad Richard Gordon Alan Bean Second landing, in Ocean of Storms
Ocean of Storms
near Surveyor 3
Surveyor 3
. Surface EVA time: 7:45 hr. Samples returned: 75.62 pounds (34.30 kg).

Apollo
Apollo
13 Apr 11–17, 1970 AS-508 CSM-109 Odyssey LM-7 Aquarius James Lovell Jack Swigert Fred Haise Third landing attempt aborted near the Moon, due to SM failure. Crew used LM as "life boat" to return to Earth.

Apollo
Apollo
14 Jan 31 – Feb 9, 1971 AS-509 CSM-110 Kitty Hawk LM-8 Antares Alan Shepard Stuart Roosa Edgar Mitchell Third landing, in Fra Mauro formation, located northeast of the Sea of Storms. Surface EVA time: 9:21 hr. Samples returned: 94.35 pounds (42.80 kg).

Apollo
Apollo
15 Jul 26 – Aug 7, 1971 AS-510 CSM-112 Endeavour LM-10 Falcon David Scott Alfred Worden James Irwin First Extended LM and rover, landed in Hadley-Apennine, located near the Sea of Showers/Rains. Surface EVA time:18:33 hr. Samples returned: 169.10 pounds (76.70 kg).

Apollo
Apollo
16 Apr 16–27, 1972 AS-511 CSM-113 Casper LM-11 Orion John Young T. Kenneth Mattingly Charles Duke Landed in Plain of Descartes. Surface EVA time: 20:14 hr. Samples returned: 207.89 pounds (94.30 kg).

Apollo
Apollo
17 Dec 7–19, 1972 AS-512 CSM-114 America LM-12 Challenger Eugene Cernan Ronald Evans Harrison Schmitt Only Saturn V
Saturn V
night launch. Landed in Taurus-Littrow. First geologist on the Moon. Final manned Moon
Moon
landing. Surface EVA time: 22:02 hr. Samples returned: 243.40 pounds (110.40 kg).

Source: Apollo
Apollo
by the Numbers: A Statistical Reference (Orloff 2004).[117] Samples returned[edit] Main article: Moon
Moon
rock

The most famous of the Moon
Moon
rocks recovered, the Genesis Rock, returned from Apollo 15.

Ferroan Anorthosite
Anorthosite
Moon
Moon
rock, returned from Apollo 16.

The Apollo
Apollo
program returned over 382 kg (842 lb) of lunar rocks and soil to the Lunar Receiving Laboratory
Lunar Receiving Laboratory
in Houston.[118][117][119] Today, 75% of the samples are stored at the Lunar Sample Laboratory Facility
Lunar Sample Laboratory Facility
built in 1979.[120] The rocks collected from the Moon
Moon
are extremely old compared to rocks found on Earth, as measured by radiometric dating techniques. They range in age from about 3.2 billion years for the basaltic samples derived from the lunar maria, to about 4.6 billion years for samples derived from the highlands crust.[121] As such, they represent samples from a very early period in the development of the Solar System, that are largely absent on Earth. One important rock found during the Apollo
Apollo
Program is dubbed the Genesis Rock, retrieved by astronauts David Scott
David Scott
and James Irwin
James Irwin
during the Apollo
Apollo
15 mission.[122] This anorthosite rock is composed almost exclusively of the calcium-rich feldspar mineral anorthite, and is believed to be representative of the highland crust.[123] A geochemical component called KREEP
KREEP
was discovered by Apollo
Apollo
12, which has no known terrestrial counterpart.[124] KREEP
KREEP
and the anorthositic samples have been used to infer that the outer portion of the Moon
Moon
was once completely molten (see lunar magma ocean).[125] Almost all the rocks show evidence of impact process effects. Many samples appear to be pitted with micrometeoroid impact craters, which is never seen on Earth rocks, due to the thick atmosphere. Many show signs of being subjected to high pressure shock waves that are generated during impact events. Some of the returned samples are of impact melt (materials melted near an impact crater.) All samples returned from the Moon
Moon
are highly brecciated as a result of being subjected to multiple impact events.[126] Analysis of composition of the lunar samples supports the giant impact hypothesis, that the Moon
Moon
was created through impact of a large astronomical body with the Earth.[127] Costs[edit] When President Kennedy first chartered the Moon
Moon
landing program, a preliminary cost estimate of $7 billion was generated, but this proved an extremely unrealistic guess of what could not possibly be determined precisely, and James Webb used his judgment as administrator to change the estimate to $20 billion before giving it to Vice President Johnson.[128] When Kennedy made his 1962 speech at Rice University, the annual space budget was $5.4 billion, and he described this cost as 40 cents per person per week, "somewhat less than we pay for cigarettes and cigars every year", but that the Moon
Moon
program would soon raise this to "more than 50 cents a week for every man, woman and child in the United States".[25]

Year Apollo
Apollo
budget ($ in thousands) NASA
NASA
budget ($ in thousands) Apollo
Apollo
share of total budget (%)

1960 100 523,575 <1%

1961 1,000 964,000 <1%

1962 160,000 1,671,750 10%

1963 617,164 3,674,115 17%

1964 2,272,952 3,974,979 57%

1965 2,614,619 4,270,695 61%

1966 2,967,385 4,511,644 66%

1967 2,916,200 4,175,100 70%

1968 2,556,000 3,970,000 64%

1969 2,025,000 3,193,559 63%

1970 1,686,145 3,113,765 54%

1971 913,669 2,555,000 36%

1972 601,200 2,517,700 24%

1973 76,700 2,509,900 3%

Total 19,408,134 56,661,332 34%[129]

Webb's estimate shocked many at the time (including the President) but ultimately proved to be reasonably accurate. In January 1969, NASA prepared an itemized estimate of the run-out cost of the Apollo program. The total came to $23.9 billion, itemized as follows:[130]

Aircraft/Operation Cost ($)

Apollo
Apollo
spacecraft 7,945.0 million

Saturn I
Saturn I
launch vehicles 767.1 million

Saturn IB
Saturn IB
launch vehicles 1,131.2 million

Saturn V
Saturn V
launch vehicles 6,871.1 million

Launch vehicle
Launch vehicle
engine development 854.2 million

Mission support 1,432.3 million

Tracking and data acquisition 664.1 million

Ground facilities 1,830.3 million

Operation of installations 2,420.6 million

The final cost of Apollo
Apollo
was reported to Congress as $25.4 billion in 1973,[1] It took up the majority of NASA's budget while it was being developed. For example, in 1966 it accounted for about 60 percent of NASA's total $5.2 billion budget.[131] That was one of the biggest investment of the US in science, research and development, and employed thousands of American scientists. A single Saturn V
Saturn V
launch in 1969 cost up to $375 million, compared to the National Science Foundation's fiscal year 1970 budget of $440 million.[132] In 2009, NASA
NASA
held a symposium on project costs which presented an estimate of the Apollo
Apollo
program costs in 2005 dollars as roughly $170 billion ($206 billion in 2016 dollars[2]). This included all research and development costs; the procurement of 15 Saturn V rockets, 16 Command/Service Modules, 12 Lunar Modules, plus program support and management costs; construction expenses for facilities and their upgrading, and costs for flight operations. This was based on a Congressional Budget Office
Congressional Budget Office
report, A Budgetary Analysis of NASA's New Vision for Space, September 2004.[128] The Space Review estimated in 2010 the cost of Apollo
Apollo
from 1959 to 1973 as $20.4 billion, or $109 billion in 2010 dollars. ($120 billion in 2016 dollars[2])[133] Apollo
Apollo
Applications Program[edit] Main article: Apollo
Apollo
Applications Program Looking beyond the manned lunar landings, NASA
NASA
investigated several post-lunar applications for Apollo
Apollo
hardware. The Apollo
Apollo
Extension Series ( Apollo
Apollo
X,) proposed up to 30 flights to Earth orbit, using the space in the Spacecraft
Spacecraft
Lunar Module Adapter (SLA) to house a small orbital laboratory (workshop). Astronauts would continue to use the CSM as a ferry to the station. This study was followed by design of a larger orbital workshop to be built in orbit from an empty S-IVB Saturn upper stage, and grew into the Apollo
Apollo
Applications Program (AAP). The workshop was to be supplemented by the Apollo
Apollo
Telescope Mount, which could be attached to the ascent stage of the lunar module via a rack.[134] The most ambitious plan called for using an empty S-IVB
S-IVB
as an interplanetary spacecraft for a Venus fly-by mission.[135] The S-IVB
S-IVB
orbital workshop was the only one of these plans to make it off the drawing board. Dubbed Skylab, it was constructed complete on the ground rather than in space, and launched in 1973 using the two lower stages of a Saturn V. It was equipped with an Apollo
Apollo
Telescope Mount. Skylab's last crew departed the station on February 8, 1974, and the station itself re-entered the atmosphere in 1979.[136][137] The Apollo-Soyuz Test Project
Apollo-Soyuz Test Project
also used Apollo
Apollo
hardware for the first joint nation space flight, paving the way for future cooperation with other nations in the Space Shuttle
Space Shuttle
and International Space Station programs.[137][138] Recent observations[edit]

Tranquility Base, imaged in March 2012 by the Lunar Reconnaissance Orbiter

In September 2007, the X PRIZE Foundation and Google
Google
announced the Google
Google
Lunar X Prize, to be awarded for a robotic lunar landing mission which transmits close-up images of the Apollo
Apollo
Lunar Modules and other artificial objects on the surface.[139] In 2008, Japan
Japan
Aerospace Exploration Agency's SELENE
SELENE
probe observed evidence of the halo surrounding the Apollo
Apollo
15 Lunar Module blast crater while orbiting above the lunar surface.[140] In 2009, NASA's robotic Lunar Reconnaissance Orbiter, while orbiting 50 kilometers (31 mi) above the Moon, began photographing the remnants of the Apollo
Apollo
program left on the lunar surface, and photographed each site where manned Apollo
Apollo
flights landed.[141][142] All of the U. S. flags left on the Moon
Moon
during the Apollo
Apollo
missions were found to still be standing, with the exception of the one left during the Apollo
Apollo
11 mission, which was blown over during that mission's lift-off from the lunar surface and return to the mission Command Module in lunar orbit; the degree to which these flags retain their original colors remains unknown.[143] In a November 16, 2009, editorial, The New York Times
The New York Times
opined:

[T]here's something terribly wistful about these photographs of the Apollo
Apollo
landing sites. The detail is such that if Neil Armstrong
Neil Armstrong
were walking there now, we could make him out, make out his footsteps even, like the astronaut footpath clearly visible in the photos of the Apollo
Apollo
14 site. Perhaps the wistfulness is caused by the sense of simple grandeur in those Apollo
Apollo
missions. Perhaps, too, it’s a reminder of the risk we all felt after the Eagle had landed – the possibility that it might be unable to lift off again and the astronauts would be stranded on the Moon. But it may also be that a photograph like this one is as close as we’re able to come to looking directly back into the human past... There the [ Apollo
Apollo
11] lunar module sits, parked just where it landed 40 years ago, as if it still really were 40 years ago and all the time since merely imaginary.[144]

Legacy[edit] Science and engineering[edit] Further information: NASA
NASA
spin-off technologies The Apollo
Apollo
program has been called the greatest technological achievement in human history.[145][146] Apollo
Apollo
stimulated many areas of technology, leading to over 1,800 spinoff products as of 2015.[147] The flight computer design used in both the Lunar and Command Modules was, along with the Polaris and Minuteman missile systems, the driving force behind early research into integrated circuits (IC). By 1963, Apollo
Apollo
was using 60 percent of the United States' production of ICs. The crucial difference between the requirements of Apollo
Apollo
and the missile programs was Apollo's much greater need for reliability. While the Navy and Air Force could work around reliability problems by deploying more missiles, the political and financial cost of failure of an Apollo
Apollo
mission was unacceptably high.[148] Cultural impact[edit]

Earthrise
Earthrise
photograph taken by Apollo 8
Apollo 8
on December 24, 1968. "Everything that I ever knew – my life, my loved ones, the Navy – everything, the whole world was behind my thumb." –James Lovell

The crew of Apollo 8
Apollo 8
sent the first live televised pictures of the Earth and the Moon
Moon
back to Earth, and read from the creation story in the Book of Genesis, on Christmas Eve
Christmas Eve
1968.[149] An estimated one quarter of the population of the world saw—either live or delayed—the Christmas Eve
Christmas Eve
transmission during the ninth orbit of the Moon,[150] and an estimated one fifth of the population of the world watched the live transmission of the Apollo 11
Apollo 11
moonwalk.[151]

The Blue Marble
The Blue Marble
photograph taken on December 7, 1972 during Apollo
Apollo
17. "We went to explore the Moon, and in fact discovered the Earth." –Eugene Cernan

The Apollo
Apollo
program also affected environmental activism in the 1970s due to photos taken by the astronauts. The most famous, taken by the Apollo 17
Apollo 17
astronauts, is The Blue Marble. This image, which was released during a surge in environmentalism, became a symbol of the environmental movement, as a depiction of Earth's frailty, vulnerability, and isolation amid the vast expanse of space.[152] According to The Economist, Apollo
Apollo
succeeded in accomplishing President Kennedy's goal of taking on the Soviet Union
Soviet Union
in the Space Race, and beat it by accomplishing a singular and significant achievement, and thereby showcased the superiority of the free-market system as represented by the US. The publication noted the irony that in order to achieve the goal, the program required the organization of tremendous public resources within a vast, centralized government bureaucracy.[153] There are those who, despite evidence to the contrary, deny that the Moon
Moon
landings took place. The Apollo
Apollo
Moon
Moon
landing hoax claims helped propel conspiracy theories into a quasi-political narrative.[154] Apollo 11
Apollo 11
broadcast data restoration project[edit] See also: Apollo 11
Apollo 11
missing tapes As part of Apollo
Apollo
11's 40th anniversary in 2009, NASA
NASA
spearheaded an effort to digitally restore the existing videotapes of the mission's live televised moonwalk.[155] After an exhaustive three-year search for missing tapes of the original video of the Apollo 11
Apollo 11
moonwalk, NASA
NASA
concluded the data tapes had more than likely been accidentally erased.[156]

We're all saddened that they're not there. We all wish we had 20-20 hindsight. I don't think anyone in the NASA
NASA
organization did anything wrong, I think it slipped through the cracks, and nobody's happy about it. — Dick Nafzger, TV Specialist, NASA
NASA
Goddard Space Flight Center[156]

The Moon
Moon
landing data was recorded by a special Apollo
Apollo
TV camera which recorded in a format incompatible with broadcast TV. This resulted in lunar footage that had to be converted for the live television broadcast and stored on magnetic telemetry tapes. During the following years, a magnetic tape shortage prompted NASA
NASA
to remove massive numbers of magnetic tapes from the National Archives and Records Administration to be recorded over with newer satellite data. Stan Lebar, who led the team that designed and built the lunar television camera at Westinghouse Electric Corporation, also worked with Nafzger to try to locate the missing tapes.[156]

So I don't believe that the tapes exist today at all. It was a hard thing to accept. But there was just an overwhelming amount of evidence that led us to believe that they just don't exist anymore. And you have to accept reality. — Stan Lebar, lunar television camera designer, Westinghouse Electric Corporation[156]

With a budget of $230,000, the surviving original lunar broadcast data from Apollo 11
Apollo 11
was compiled by Nafzger and assigned to Lowry Digital for restoration. The video was processed to remove random noise and camera shake without destroying historical legitimacy.[157] The images were from tapes in Australia, the CBS News
CBS News
archive, and kinescope recordings made at Johnson Space Center. The restored video, remaining in black and white, contains conservative digital enhancements and did not include sound quality improvements.[157] Depictions on film[edit] Documentaries[edit] Numerous documentary films cover the Apollo
Apollo
program and the Space Race, including:

Moonwalk One
Moonwalk One
(1970) For All Mankind
For All Mankind
(1989) "Moon" from the BBC
BBC
miniseries The Planets (1999) Magnificent Desolation: Walking on the Moon
Moon
3D (2005) The Wonder of It All (2007) In the Shadow of the Moon
Moon
(2007) When We Left Earth: The NASA
NASA
Missions (miniseries) (2008) Moon
Moon
Machines (miniseries) (2008) James May on the Moon
Moon
(documentary commemorating 40 years since the landings) (2009) NASA's Story (documentary series) (2009)

Docudramas[edit] The Apollo
Apollo
program, or certain missions, have been dramatized in Apollo 13
Apollo 13
(1995), Apollo 11
Apollo 11
(1996), From the Earth to the Moon
Moon
(1998), The Dish
The Dish
(2000), Space Race
Space Race
(2005), and Moonshot (2009). See also[edit]

Spaceflight
Spaceflight
portal Moon
Moon
portal

Apollo
Apollo
Lunar Surface Experiments Package Exploration of the Moon List of man-made objects on the Moon List of megaprojects Lockheed Propulsion Company Moon
Moon
landing conspiracy theories Soviet manned lunar programs Space policy
Space policy
of the United States Splashdown (spacecraft landing) Stolen and missing Moon
Moon
rocks Apollo
Apollo
21, a fictional Moon
Moon
landing

Notes[edit]

^ a b 93rd Congress 1973, p. 1271. ^ a b c d Thomas, Ryland; Williamson, Samuel H. (2018). "What Was the U.S. GDP Then?". MeasuringWorth. Retrieved January 5, 2018.  United States
United States
Gross Domestic Product deflator figures follow the Measuring Worth series. ^ Murray & Cox 1989, p. 55 ^ "Release 69-36" (Press release). Cleveland, OH: Lewis Research Center. July 14, 1969. Retrieved June 21, 2012.  ^ Brooks, et al. 1979, Chapter 1.7: "Feasility Studies". pp. 16-21 ^ Preble, Christopher A. (2003). ""Who Ever Believed in the 'Missile Gap'?": John F. Kennedy
John F. Kennedy
and the Politics of National Security". Presidential Studies Quarterly. 33 (4): 813. JSTOR 27552538.  ^ Beschloss 1997 ^ Sidey 1963, pp. 117–118 ^ Beschloss 1997, p. 55 ^ 87th Congress 1961 ^ Sidey 1963, p. 114 ^ Kennedy, John F. (April 20, 1961). "Memorandum for Vice President". The White House
White House
(Memorandum). Boston, MA: John F. Kennedy
John F. Kennedy
Presidential Library and Museum. Retrieved August 1, 2013.  ^ Launius, Roger D. (July 1994). "President John F. Kennedy
John F. Kennedy
Memo for Vice President, 20 April 1961" (PDF). Apollo: A Retrospective Analysis (PDF). Monographs in Aerospace History. Washington, D.C.: NASA. OCLC 31825096. Retrieved August 1, 2013.  Key Apollo
Apollo
Source Documents. ^ a b Johnson, Lyndon B. (April 28, 1961). "Memorandum for the President". Office of the Vice President (Memorandum). Boston, MA: John F. Kennedy
John F. Kennedy
Presidential Library and Museum. Retrieved August 1, 2013.  ^ Launius, Roger D. (July 1994). "Lyndon B. Johnson, Vice President, Memo for the President, 'Evaluation of Space Program,' 28 April 1961" (PDF). Apollo: A Retrospective Analysis (PDF). Monographs in Aerospace History. Washington, D.C.: NASA. OCLC 31825096. Retrieved August 1, 2013.  Key Apollo
Apollo
Source Documents. ^ Kennedy, John F. (May 25, 1961). Special
Special
Message to Congress on Urgent National Needs (Motion picture (excerpt)). Boston, MA: John F. Kennedy Presidential Library and Museum. Accession Number: TNC:200; Digital Identifier: TNC-200-2. Retrieved August 1, 2013.  ^ Murray & Cox 1989, pp. 16–17 ^ Sietzen, Frank (October 2, 1997). "Soviets Planned to Accept JFK's Joint Lunar Mission Offer". SpaceDaily. SpaceCast News Service. Retrieved August 1, 2013.  ^ "Soyuz - Development of the Space Station; Apollo
Apollo
- Voyage to the Moon". Retrieved June 12, 2016.  ^ Brooks, et al. 1979, Chapter 2.5: "Contracting for the Command Module". pp. 41-44 ^ Allen, Bob (ed.). " NASA
NASA
Langley Research Center's Contributions to the Apollo
Apollo
Program". Langley Research Center. NASA. Retrieved August 1, 2013.  ^ "Historical Facts". MSFC History Office. Archived from the original on June 3, 2016. Retrieved June 7, 2016.  ^ Swenson, Loyd S., Jr.; Grimwood, James M.; Alexander, Charles C. (1989) [Originally published 1966]. "Chapter 12.3: Space Task Group Gets a New Home and Name". This New Ocean: A History of Project Mercury. The NASA
NASA
History Series. Washington, D.C.: NASA. OCLC 569889. NASA
NASA
SP-4201. Retrieved August 1, 2013.  ^ Dethloff, Henry C. (1993). "Chapter 3: Houston
Houston
- Texas - U.S.A.". Suddenly Tomorrow Came... A History of the Johnson Space Center. National Aeronautics and Space Administration. ISBN 978-1502753588.  ^ a b Kennedy, John F. (September 12, 1962). "Address at Rice University on the Nation's Space Effort". Boston, MA: John F. Kennedy Presidential Library and Museum. Archived from the original on May 6, 2010. Retrieved August 1, 2013.  ^ Nixon, Richard M. (February 19, 1973). "50 – Statement About Signing a Bill Designating the Manned Spacecraft
Spacecraft
Center in Houston, Texas, as the Lyndon B. Johnson
Lyndon B. Johnson
Space Center". The American Presidency Project. University of California, Santa Barbara. Retrieved July 9, 2011.  ^ "Dr. Kurt H. Debus". Kennedy Biographies. NASA. February 1987. Retrieved October 7, 2008.  ^ "Executive Orders Disposition Tables: Lyndon B. Johnson
Lyndon B. Johnson
- 1963: Executive Order 11129". Office of the Federal Register. National Archives and Records Administration. Retrieved April 26, 2010.  ^ Craig, Kay (ed.). "KSC Technical Capabilities: O&C Altitude Chambers". Center Planning and Development Office. NASA. Archived from the original on March 28, 2012. Retrieved July 29, 2011.  ^ "1976 Standard Atmosphere Properties". luizmonteiro.com (Complete International Standard Atmosphere
International Standard Atmosphere
calculator (1976 model)). Luizmonteiro, LLC. Retrieved August 1, 2013.  ^ Johnson 2002 ^ Bilstein 1996, "Appendix G - NASA
NASA
Organization During Apollo-Saturn". November 1963. p. 443 ^ Narvaez, Alfonso A. (February 1, 1990). "Samuel C. Phillips, Who Directed Apollo
Apollo
Lunar Landing, Dies at 68". The New York Times. Retrieved April 14, 2010.  ^ Brooks, et al. 1979, Chapter 3.2: "Early Reaction to LOR". pp. 61-67 ^ Brooks, et al. 1979, Chapter 3.4: "Early Reaction to LOR". p. 71 ^ Hansen 1999, p. 32 ^ Hansen 1999, pp. 35-39 ^ Brooks, et al. 1979, Chapter 3.6: "Settling the Mode Issue". pp. 81-83 ^ Levine, Anold S. (1982). Managing NASA
NASA
in the Apollo
Apollo
Era, chapter 27, "The Lunar Landing Decision and Its Aftermath". NASA
NASA
SP-4102. ^ Brooks, Grimwood, and Swenson (1979). Chariots For Apollo, chapter 3.7, "Casting the Die". NASA
NASA
SP-4205. ^ Brooks, Grimwood, and Swenson (1979). Chariots For Apollo, chapter 4.4, "Pressures by PSAC". NASA
NASA
SP-4205. ^ Hansen 1999, p. 42 ^ Letterman, p. 404 (James Lovell, "Explosion on Apollo
Apollo
13; April 1970: From the Earth to the Moon
Moon
and Back". Lovell writes, "Naturally, I'm glad that view didn't prevail, and I'm thankful that by the time of Apollo
Apollo
10, the first lunar mission carrying the LM, the LM as a lifeboat was again being discussed."). ^ a b Dumoulin, Jim (June 29, 2001). "Apollo-13 (29)". Historical Archive for Manned Missions. NASA. Retrieved September 12, 2012.  ^ a b " Apollo
Apollo
Program Summary Report" (PDF). Houston, TX: NASA. April 1975. pp. 3–66–4–12. JSC-09423. Retrieved August 1, 2013.  ^ a b c Orloff 2004, "Launch Vehicle/ Spacecraft
Spacecraft
Key Facts - 2nd Table" ^ Wilford 1969, p. 167 ^ Leary, Warren E. (March 27, 2002). "T. J. Kelly, 72, Dies; Father of Lunar Module". The New York Times. Retrieved August 1, 2013.  ^ Bilstein 1996, Chapter 2.2: "Aerospace Alphabet: ABMA, ARPA, MSFC". p. 50 ^ Bilstein 1996, Chapter 3: "Missions, Modes, and Manufacturing". p. 60 ^ Townsend 1973, p. 14 ^ Townsend 1973, p. 22 ^ a b c " Apollo 11
Apollo 11
30th Anniversary: Manned Apollo
Apollo
Missions". NASA History Office. 1999. Archived from the original on February 20, 2011. Retrieved March 3, 2011.  ^ Dawson & Bowles 2004, p. 85. See footnote 61. ^ Brooks, et al. 1979, Chapter 7.6: "Portents for Operations" ^ Apollo
Apollo
Systems Description (PDF) (Technical Memorandum). Volume II: Saturn Launch Vehicles. NASA. February 1, 1964. p. 3-3. NASA TM-X-881. Retrieved August 1, 2013.  ^ Wade, Mark. " Apollo
Apollo
SA-11". Encyclopedia Astronautica. Archived from the original on June 17, 2012. Retrieved June 21, 2012.  ^ "Influences on Booster Determination". NASA
NASA
HQ. Retrieved June 7, 2016.  ^ " Saturn IB
Saturn IB
Design Features". Saturn IB
Saturn IB
News Reference (PDF). NASA; Chrysler
Chrysler
Corporation; McDonnell Douglas Astronautics Company; International Business Machines Corporation; Rocketdyne. December 1965. OCLC 22102803. Retrieved August 1, 2013.  ^ a b "Origin of NASA's Names: Manned Spaceflight". Retrieved July 19, 2016.  ^ Orloff 2004 Launch "Vehicle/ Spacecraft
Spacecraft
Key Facts - 1st Table" ^ " Astronaut
Astronaut
Bio: Deke Slayton
Deke Slayton
6/93". NASA. June 1993. Retrieved August 1, 2013.  ^ " Astronaut
Astronaut
Bio: Harrison Schmitt". NASA. December 1994. Retrieved September 12, 2012.  ^ Pearlman, Robert Z. (October 20, 2008). "First Apollo
Apollo
flight crew last to be honored". collectSPACE. Robert Pearlman. Retrieved June 12, 2014.  ^ Gatland, Kenneth (1976). Manned Spacecraft. New York: MacMillan. pp. 75–85, 88–89.  ^ McDivitt, James A. (April 1971). "7.0 Command and Service Module Performance". Apollo
Apollo
14 Mission Report. Houston, Texas: NASA
NASA
Manned Spacecraft
Spacecraft
Center. Retrieved 19 May 2016.  ^ McDivitt, James A. (March 1970). Apollo
Apollo
12 Mission Report (PDF). Houston, Texas: NASA
NASA
Manned Spacecraft
Spacecraft
Center. p. 5-4.  ^ " Apollo
Apollo
12 Lunar Module / ALSEP". NASA
NASA
Space Science Data Coordinate Archive. Retrieved June 15, 2016.  ^ " Apollo
Apollo
13's Booster Impact". NASA. Retrieved June 16, 2016.  ^ Williams, David R. "Apollo: Where are they now?". National Space Science Data Center. NASA. Retrieved December 2, 2011.  ^ Postlaunch Report for Mission AS-201
AS-201
( Apollo
Apollo
Spacecraft
Spacecraft
009) (PDF). Houston, TX: NASA. May 6, 1966. MSC-A-R-66-4. Retrieved August 1, 2013.  ^ Postlaunch Report for Mission AS-202
AS-202
( Apollo
Apollo
Spacecraft
Spacecraft
011) (PDF). Houston, TX: NASA. October 12, 1966. MSC-A-R-66-5. Retrieved August 1, 2013.  ^ Chrysler
Chrysler
Corp. (January 13, 1967). Evaluation of AS-203
AS-203
Low Gravity Orbital Experiment (Technical report). NASA.  ^ " Apollo
Apollo
flight crew nomenclature changes". Astronautix. Archived from the original on February 1, 2010. Retrieved July 8, 2016.  ^ "A1C". Astronautix. Retrieved July 8, 2016.  ^ Brooks, Grimwood, Swenson (1979). "Plans and Progress in Space Flight". Chariots for Apollo. Archived from the original on February 9, 2008. Retrieved April 4, 2016. CS1 maint: Uses authors parameter (link) ^ a b Lutz, Charles C.; Carson, Maurice A. (November 1975). "Apollo Experience Report - Development of the Extravehicular Mobility Unit" (PDF). NASA
NASA
Technical Note. TN D-8093: 22–25. Retrieved 18 May 2016.  ^ a b Teitel, Amy Shira (December 4, 2013) [2013]. "How Donn Eisele Became "Whatshisname," the Command Module Pilot of Apollo
Apollo
7". Popular Science.  ^ Brooks, et al. 1979, Chapter 8.7: "Preparations for the First Manned Apollo
Apollo
Mission" ^ Orloff 2004, " Apollo
Apollo
1: The Fire 27 January 1967" ^ Benson, Charles D.; Faherty, William Barnaby (1978). "Delay after Delay after Delay". Moonport: A History of Apollo
Apollo
Launch Facilities and Operations. The NASA
NASA
History Series. Washington, D.C.: Scientific and Technical Information Office, NASA. LCCN 77029118. OCLC 3608505. NASA
NASA
SP-4204. Archived from the original on January 23, 2008. Retrieved August 1, 2013.  ^ NASA
NASA
never volunteered the tiger team findings to the US Congress in the course of its regular oversight, but its existence was publicly disclosed as "the Phillips report" in the course of the Senate investigation into the Apollo
Apollo
204 fire. "The Phillips Report". NASA History Office. Archived from the original on April 15, 2010. Retrieved April 14, 2010.  ^ Brooks, et al. 1979, Chapter 7.4: "The LEM Test Program: A Pacing Item" ^ Seamans, Robert C., Jr. (April 5, 1967). "Description of Test Sequence and Objectives". Report of Apollo
Apollo
204 Review Board. NASA History Office. Retrieved October 7, 2007.  ^ a b Seamans, Robert C., Jr. (April 5, 1967). "Findings, Determinations And Recommendations". Report of Apollo
Apollo
204 Review Board. NASA
NASA
History Office. Retrieved October 7, 2007.  ^ Gray 1994 ^ Ertel et al. 1978, p. 119 ^ a b Brooks, Courtney; Grimwood, James; Swenson, Loyd (1979). "The Slow Recovery". NASA. Retrieved May 14, 2016.  ^ Ertel & al. 1978, Part 1(H) ^ Ertel et al. 1978, p. 157 ^ Low, George M. (1975). "Testing and Retesting To Get Ready For flight". In Cortright, Edgar M. Apollo
Apollo
Expeditions to the Moon. Washington, D.C.: Scientific and Technical Information Office, NASA. LCCN 75600071. OCLC 1623434. NASA
NASA
SP-350. Retrieved August 1, 2013.  ^ Brooks, et al. 1979, Chapter 10.5: " Apollo
Apollo
6: Saturn V's Shaky Dress Rehearsal" ^ "Mission Objective". Retrieved July 8, 2016.  ^ "Mission Objective". Retrieved July 8, 2016.  ^ Chaikin, Andrew (1994). A Man on the Moon: The Voyages of the Apollo Astronauts. New York: Viking. ISBN 978-0-670-81446-6. LCCN 93048680.  ^ "Poised for the Leap". Time. New York. December 6, 1968. Retrieved December 15, 2011.  ^ Brooks, et al. 1979, Chapter 11.6: " Apollo
Apollo
8: The First Lunar Voyage". pp. 274-284 ^ " Apollo
Apollo
9". NASA
NASA
Space Science Data Coordinated Archive. Retrieved July 8, 2016.  ^ " Apollo
Apollo
10". NASA
NASA
JSC. Retrieved July 8, 2016.  ^ a b "Extravehicular Activity". Retrieved June 11, 2016.  ^ " Apollo 11
Apollo 11
Mission Overview". NASA. Retrieved July 8, 2016.  ^ Mikkelson, Barbara; Mikkelson, David P. (October 2006). "One Small Misstep: Neil Armstrong's First Words on the Moon". Snopes.com. Urban Legends Reference Pages. Retrieved September 19, 2009.  ^ Conrad, Charles, Jr.; Shepard, Alan B, Jr. (1975). "Tan Dust On Surveyor". In Cortright, Edgar M. Apollo
Apollo
Expeditions to the Moon. Washington, D.C.: Scientific and Technical Information Office, NASA. LCCN 75600071. OCLC 1623434. NASA
NASA
SP-350. Retrieved August 1, 2013.  ^ Compton 1989, Chapter 11-7: "Mission to Fra Mauro". p. 199 ^ Compton 1989, Chapter 12-4: "Changes for Extended Lunar Missions". pp. 211-214 ^ Compton 1989, Chapter 11-7: "Cutbacks and Program Changes". pp. 201-202 ^ Wright, Mike. "Three Saturn Vs on Display Teach Lessons in Space History". Marshall Space Flight Center
Marshall Space Flight Center
History Office. Retrieved July 19, 2016.  ^ Williams, David (December 11, 2003). " Apollo
Apollo
18 through 20 - The Cancelled Missions". NASA
NASA
Space Science Data Coordinated Archive. Retrieved June 11, 2016.  ^ a b " Apollo
Apollo
14". NASA. July 8, 2009. Retrieved June 11, 2016.  ^ " Apollo
Apollo
14 Command and Service Module (CSM)". NASA
NASA
Space Science Data Coordinated Archive. Retrieved June 11, 2016.  ^ "MEMORANDUM FOR THE PRESIDENT" by Caspar Weinberger
Caspar Weinberger
(via George Schultz), Aug 12, 1971, Page32(of 39) [1] ^ " Apollo
Apollo
15". NASA. July 8, 2009. Retrieved June 9, 2016.  ^ " Apollo
Apollo
16". NASA. July 8, 2009. Retrieved June 9, 2016.  ^ a b " Apollo
Apollo
17". NASA. July 30, 2015. Retrieved June 9, 2016.  ^ Grinter, Kay (September 28, 2011). " Apollo
Apollo
18' Myths Debunked, NASA-style". NASA. Retrieved June 10, 2016.  ^ Howell, Elizabeth (April 23, 2013). "Harrison Schmitt: Geologist on the Moon". Space.com. Retrieved June 10, 2016.  ^ a b Orloff 2004, "Extravehicular Activity" ^ " NASA
NASA
Lunar Sample Laboatory Facility". NASA
NASA
Curation Lunar. NASA. September 1, 2016. Retrieved February 15, 2017. A total of 382 kilograms of lunar material, comprising 2200 individual specimens returned from the Moon...  ^ Chaikin, Andrew (2007). A Man On the Moon: The Voyages of the Apollo Astronauts (Third ed.). New York: Penguin Books. pp. 611–613.  ^ Kristen Erickson (July 16, 2009). Amiko Kauderer, ed. "Rock Solid: JSC's Lunar Sample Lab Turns 30". 40th Anniversary of Apollo
Apollo
Program. NASA. Retrieved June 29, 2012.  ^ Papike et al. 1998, pp. 5-001 – 5-234 ^ Harland 2008, pp. 132-133. ^ Harland 2008, p. 171. ^ Harland 2008, pp. 49-50. ^ Harland 2008, pp. 323-327. ^ Harland 2008, pp. 330-332. ^ Burrows 1999, p. 431 ^ a b Butts, Glenn; Linton, Kent (April 28, 2009). "The Joint Confidence Level Paradox: A History of Denial" (PDF). 2009 NASA
NASA
Cost Symposium. Cost Analysis Division. pp. 25–26. Archived from the original (PDF) on October 26, 2011.  ^ " Apollo
Apollo
Program Budget Appropriations".  ^ Wilford 1969, p. 67 ^ Skolnikoff, Eugene B.; Hoagland, John H. (1968). The World-wide Spread of Space Technology. 69-5. Cambridge, MA: MIT Center for Space Research. OCLC 14154430.  ^ Heppenheimer 1999, Chapter 2: "NASA's Uncertain Future", p. 73 ^ Lafleur, Claude (March 8, 2010). "Costs of US piloted programs". The Space Review. Retrieved February 18, 2012.  ^ "A Science Program for Manned Spaceflight". Retrieved June 11, 2016.  ^ "Manned Venus Flyby". NASA. February 1, 1967. Retrieved July 19, 2016.  ^ "What Goes Up..." Retrieved June 11, 2016.  ^ a b Bilstein 1996, "Legacy", pp. 379-382 ^ "Apollo-Soyuz: An Orbital Partnership Begins". NASA. July 10, 2015. Retrieved July 19, 2016.  ^ "Rules Overview". Google
Google
Lunar X Prize. X PRIZE Foundation. Retrieved August 1, 2013.  ^ "The 'halo' area around Apollo
Apollo
15 landing site observed by Terrain Camera on SELENE(KAGUYA)" (Press release). Chōfu, Tokyo: Japan Aerospace Exploration Agency. May 20, 2008. Archived from the original on December 12, 2009. Retrieved November 19, 2009.  ^ Hautaluoma, Grey; Freeberg, Andy (July 17, 2009). Garner, Robert, ed. "LRO Sees Apollo
Apollo
Landing Sites". NASA. Archived from the original on November 16, 2009. Retrieved November 19, 2009.  ^ Townsend, Jason (ed.). " Apollo
Apollo
Landing Sites Revisited". NASA. Archived from the original on November 13, 2009. Retrieved November 19, 2009.  ^ Robinson, Mark (July 27, 2012). "Question Answered!". LROC News System. Arizona State University. Retrieved October 28, 2012.  ^ "The Human Moon". The New York Times. November 16, 2009. Archived from the original on December 31, 2012. Retrieved November 19, 2009.  ^ " Apollo 11
Apollo 11
30th Anniversary: Introduction". NASA
NASA
History Office. 1999. Retrieved April 26, 2013.  ^ "The Moon
Moon
Landing". BBC
BBC
News. London: BBC. July 23, 1999. Archived from the original on October 2, 2002. Retrieved August 1, 2013.  ^ NASA
NASA
Spinoff Database (April 8, 2016). " NASA
NASA
Spinoff Database". National Aeronautics and Space Administration.  ^ Mindell 2008, pp. 125-131. ^ " Apollo
Apollo
8: Christmas at the Moon". NASA. Retrieved July 20, 2016.  ^ Chaikin 1994, p. 120 ^ Burrows 1999, p. 429 ^ Petsko, Gregory A (2011). "The blue marble". Genome Biology. 12 (4): 112. doi:10.1186/gb-2011-12-4-112. PMC 3218853 . PMID 21554751.  ^ Lexington, ed. (May 21, 2011). " Apollo
Apollo
plus 50". The Economist. London: The Economist
The Economist
Newspaper Limited. p. 36. Retrieved August 1, 2013.  ^ "A brief history of conspiracy theories". September 22, 2013.  ^ " Apollo
Apollo
40th Anniversary". NASA. Archived from the original on June 9, 2012. Retrieved June 21, 2012.  ^ a b c d Greenfieldboyce, Nell (July 16, 2009). "Houston, We Erased The Apollo 11
Apollo 11
Tapes". NPR. Washington, D.C.: National Public Radio, Inc. Retrieved August 1, 2013.  ^ a b Borenstein, Seth (July 17, 2009). " NASA
NASA
lost moon footage, but Hollywood restores it". U.S. News & World Report. Associated Press. Retrieved August 1, 2013. 

 This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration. References[edit]

Beschloss, Michael R. (1997). "Kennedy and the Decision to Go to the Moon". In Launius, Roger D.; McCurdy, Howard E. Spaceflight
Spaceflight
and the Myth of Presidential Leadership. Champaign, IL: University of Illinois Press. ISBN 0-252-06632-4. LCCN 96051213.  Bilstein, Roger E. (1996) [Originally published 1980]. Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles. The NASA
NASA
History Series. Foreword by William R. Lucas. Washington D.C.: NASA. OCLC 36332191. NASA
NASA
SP-4206. Retrieved August 1, 2013.  Brooks, Courtney G.; Grimwood, James M.; Swenson, Loyd S., Jr. (1979). Chariots for Apollo: A History of Manned Lunar Spacecraft. The NASA History Series. Foreword by Samuel C. Phillips. Washington, D.C.: Scientific and Technical Information Branch, NASA. ISBN 978-0-486-46756-6. LCCN 79001042. OCLC 4664449. NASA
NASA
SP-4205. Retrieved August 1, 2013.  Burrows, William E. (1999). This New Ocean: The Story of the First Space Age. New York: Modern Library. ISBN 0-375-75485-7. OCLC 42136309.  Chaikin, Andrew (1994). A Man on the Moon. New York: Penguin Books. ISBN 0-14-027201-1. OCLC 38918860.  Chaikin interviewed all the surviving astronauts and others who worked with the program. Compton, William David (1989). Where no man has gone before : a history of Apollo
Apollo
lunar exploration missions. NASA
NASA
history series. Washington, DC: National Aeronautics and Space Administration. OCLC 18223277. NASA
NASA
SP-4214.  Congress, House of Representatives, Committee on Science and Astronautics (April 13, 1961). Discussion of Soviet Man-in-space Shot (Hearing). Washington, D.C.: 87th Congress, first session. LCCN 61061306. OCLC 4052829. CS1 maint: Uses authors parameter (link) Congress, House of Representatives, Committee on Science and Astronautics (1973). 1974 NASA
NASA
Authorization Hearings (Hearing on H.R. 4567). Washington, D.C.: 93rd Congress, first session. OCLC 23229007. CS1 maint: Uses authors parameter (link) Dawson, Virginia P.; Bowles, Mark D. (2004). Taming Liquid Hydrogen: The Centaur Upper Stage Rocket
Rocket
1958-2002 (PDF). The NASA
NASA
History Series. Washington D.C.: NASA. OCLC 51518552. NASA
NASA
SP-2400-4320. Retrieved September 12, 2012.  Ertel, Ivan D.; Newkirk, Roland W.; et al. (1978). The Apollo Spacecraft: A Chronology (PDF). IV. Foreword by Kenneth S. Kleinknecht. Washington, D.C.: Scientific and Technical Information Office, NASA. LCCN 69060008. OCLC 23818. NASA
NASA
SP-4009. Retrieved August 1, 2013.  Gray, Mike (1994) [First published W. W. Norton & Company 1992]. Angle of Attack: Harrison Storms
Harrison Storms
and the Race to the Moon. New York: Penguin Books. ISBN 0-14-023280-X. OCLC 30520885.  Hansen, James R. (1999). Enchanted Rendezvous: John C. Houbolt and the Genesis of the Lunar-Orbit Rendezvous Concept (PDF). Monographs in Aerospace History. Washington, D.C.: NASA. OCLC 69343822. Retrieved May 3, 2012.  Harland, David M. (2008). Exploring the Moon: the Apollo
Apollo
Expeditions. Springer-Praxis books in space exploration. Chichester, England: Springer. ISBN 9780387746388. OCLC 495296214.  Heppenheimer, T.A. (1999). The Space Shuttle
Space Shuttle
Decision: NASA's Search for a Reusable Space Vehicle. The NASA
NASA
History Series. Washington, D.C.: NASA. OCLC 40305626. NASA
NASA
SP-4221. Retrieved August 1, 2013.  Johnson, Stephen B. (2002). The Secret of Apollo: Systems Management in American and European Space Programs. New series in NASA
NASA
history. Baltimore: Johns Hopkins University Press. ISBN 0-8018-6898-X. LCCN 2001005688. OCLC 48003131.  Launius, Roger D.; McCurdy, Howard E., eds. (1997). Spaceflight
Spaceflight
and the Myth of Presidential Leadership. Champaign, IL: University of Illinois Press. ISBN 0-252-06632-4. LCCN 96051213.  Launius, Roger D. (July 2004) [Originally published July 1994]. Apollo: A Retrospective Analysis. Monographs in Aerospace History (Reprint ed.). Washington, D.C.: NASA. Retrieved August 1, 2013.  Letterman, John B. (2003). Survivors: True Tales of Endurance: 500 Years of the Greatest Eyewitness Accounts. New York: Simon & Schuster. ISBN 0-7432-4547-4.  Mindell, David A. (2008). Digital Apollo: Human and Machine in Spaceflight. Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-13497-2. OCLC 733307011.  Murray, Charles; Cox, Catherine Bly (1989). Apollo: The Race to the Moon. New York: Simon & Schuster. ISBN 0-671-61101-1. LCCN 89006333. OCLC 19589707.  Orloff, Richard W. (September 2004) [First published 2000]. Apollo
Apollo
by the Numbers: A Statistical Reference. NASA
NASA
History Division, Office of Policy and Plans. The NASA
NASA
History Series. Washington, D.C.: NASA. ISBN 0-16-050631-X. LCCN 00061677. NASA
NASA
SP-2000-4029. Retrieved August 1, 2013.  Papike, James J.; Ryder, Graham; Shearer, Charles K. (January 1998). "Planetary Materials: Lunar Samples". Reviews in Mineralogy and Geochemistry. Washington, D.C.: Mineralogical Society of America. 36 (1): 5.1–5.234. ISBN 0-939950-46-4. ISSN 0275-0279. LCCN 99474392.  Sidey, Hugh (1963). John F. Kennedy, President (1st ed.). New York: Atheneum. LCCN 63007800. Retrieved August 1, 2013.  Townsend, Neil A. (March 1973), Apollo
Apollo
Experience Report: Launch Escape Propulsion Subsystem (PDF), Washington, D.C.: NASA, NASA
NASA
TN D-7083, retrieved September 12, 2012  Wilford, John Noble (1969). We Reach the Moon: The New York Times Story of Man's Greatest Adventure. New York: Bantam Paperbacks. OCLC 29123. 

Further reading[edit]

" Apollo
Apollo
Program Summary Report" (PDF).  (46.3 MB) NASA Report JSC-09423, April 1975 Collins, Michael (2001) [Originally published 1974; New York: Farrar, Straus and Giroux]. Carrying the Fire: An Astronaut's Journeys. Foreword by Charles Lindbergh. New York: Cooper Square Press. ISBN 978-0-8154-1028-7. LCCN 2001017080.  Astronaut Mike Collins autobiography of his experiences as an astronaut, including his flight aboard Apollo
Apollo
11. Cooper, Henry S.F., Jr. (1995) [Originally published 1972; New York: Dial Press]. Thirteen: The Apollo
Apollo
Flight That Failed. Baltimore: Johns Hopkins University Press. ISBN 0-8018-5097-5. LCCN 94039726. OCLC 31375285.  Although this book focuses on Apollo
Apollo
13, it provides a wealth of background information on Apollo
Apollo
technology and procedures. French, Francis; Burgess, Colin (2007). In the Shadow of the Moon: A Challenging Journey to Tranquility, 1965–1969. Foreword by Walter Cunningham. Lincoln: University of Nebraska Press. ISBN 978-0-8032-1128-5. LCCN 2006103047. OCLC 182559769.  History of the Apollo
Apollo
program from Apollos 1–11, including many interviews with the Apollo
Apollo
astronauts. Kranz, Gene (2000). Failure is Not an Option: Mission Control from Mercury to Apollo 13
Apollo 13
and Beyond. New York: Simon & Schuster. ISBN 0-7432-0079-9. LCCN 00027720. OCLC 43590801.  Factual, from the standpoint of a flight controller during the Mercury, Gemini, and Apollo
Apollo
space programs. Lovell, Jim; Kluger, Jeffrey (2000) [Previously published 1994 as Lost Moon]. Apollo
Apollo
13. Boston: Houghton Mifflin Company. ISBN 0-618-05665-3. LCCN 99089647. OCLC 43118301.  Details the flight of Apollo
Apollo
13. Pellegrino, Charles R.; Stoff, Joshua (1999). Chariots for Apollo: The Untold Story Behind the Race to the Moon. New York: Avon Books. ISBN 0-380-80261-9. OCLC 41579174.  Tells Grumman's story of building the Lunar Modules. Scott, David; Leonov, Alexei; Toomey, Christine (2004). Two Sides of the Moon: Our Story of the Cold War Space Race. Foreword by Neil Armstrong; introduction by Tom Hanks
Tom Hanks
(1st U.S. ed.). New York: Thomas Dunne Books. ISBN 0-312-30865-5. LCCN 2004059381. OCLC 56587777.  Seamans, Robert C., Jr. (2005). Project Apollo: The Tough Decisions. Monographs in Aerospace History. Washington, D.C.: NASA. ISBN 0-16-074954-9. LCCN 2005003682. OCLC 64271009. NASA
NASA
SP-4537.  History of the manned space program from September 1, 1960, to January 5, 1968. Slayton, Donald K.; Cassutt, Michael (1995). Deke!: An Autobiography. New York: St. Martin's Press. ISBN 0-312-85918-X.  Account of Deke Slayton's life as an astronaut and of his work as chief of the astronaut office, including selection of Apollo
Apollo
crews. "The Apollo
Apollo
Spacecraft: A Chronology. Volume 1:" (PDF).  (131.2 MB) From origin to November 7, 1962 "The Apollo
Apollo
Spacecraft: A Chronology. Volume 2:" (PDF).  (13.4 MB) November 8, 1962 – September 30, 1964 "The Apollo
Apollo
Spacecraft: A Chronology. Volume 3:" (PDF).  (57.7 MB) October 1, 1964 – January 20, 1966 "The Apollo
Apollo
Spacecraft: A Chronology. Volume 4:" (PDF).  (24.2 MB) January 21, 1966 – July 13, 1974 Wilhelms, Don E. (1993). To a Rocky Moon: A Geologist's History of Lunar Exploration. Tucson: University of Arizona Press. ISBN 0-8165-1065-2. LCCN 92033228. OCLC 26720457.  The history of lunar exploration from a geologist's point of view.

External links[edit]

Wikimedia Commons has media related to Apollo
Apollo
missions.

Wikinews has news related to: Apollo
Apollo
program

Library resources about Apollo
Apollo
program

Online books Resources in your library Resources in other libraries

Apollo
Apollo
program history at NASA's Human Space Flight (HSF) website The Apollo
Apollo
Program at the NASA
NASA
History Program Office " Apollo
Apollo
Spinoffs". Archived from the original on April 4, 2012.  The Apollo
Apollo
Program at the National Air and Space Museum Apollo
Apollo
35th Anniversary Interactive Feature at NASA
NASA
(in Flash) Lunar Mission Timeline at the Lunar and Planetary Institute

NASA
NASA
reports

Apollo
Apollo
Program Summary Report (PDF), NASA, JSC-09423, April 1975 NASA
NASA
History Series Publications Project Apollo
Apollo
Drawings and Technical Diagrams at the NASA
NASA
History Program Office The Apollo
Apollo
Lunar Surface Journal edited by Eric M. Jones and Ken Glover The Apollo
Apollo
Flight Journal by W. David Woods, et al.

Multimedia

NASA
NASA
Apollo
Apollo
Program images and videos Apollo
Apollo
Image Archive at Arizona State University Audio recording and transcript of President John F. Kennedy, NASA administrator James Webb, et al., discussing the Apollo
Apollo
agenda (White House Cabinet Room, November 21, 1962) The Project Apollo
Apollo
Archive by Kipp Teague is a large repository of Apollo
Apollo
images, videos, and audio recordings The Project Apollo
Apollo
Archive on Flickr Apollo
Apollo
Image Atlas – almost 25,000 lunar images, Lunar and Planetary Institute The short film Time of Apollo
Apollo
(1975) is available for free download at the Internet Archive The Journeys of Apollo
Apollo
- NASA
NASA
Documentary on YouTube

v t e

Missions and tests of the Apollo
Apollo
program

Rocket
Rocket
tests

SA-1 SA-2 SA-3 SA-4 SA-5 AS-203

Abort tests

QTV Pad Abort Test-1 A-001 A-002 A-003 Pad Abort Test-2 A-004

Boilerplate tests

AS-101 AS-102 AS-103 AS-104 AS-105

Unmanned missions

AS-201 AS-202 Apollo
Apollo
4 Apollo
Apollo
5 Apollo
Apollo
6 Skylab
Skylab
1

Low Earth orbit
Low Earth orbit
missions

Apollo
Apollo
7 Apollo
Apollo
9 Skylab
Skylab
2 Skylab
Skylab
3 Skylab
Skylab
4 Apollo–Soyuz Test Project

Lunar orbit
Lunar orbit
missions

Apollo
Apollo
8 Apollo
Apollo
10

Lunar landing
Lunar landing
missions

Apollo
Apollo
11 Apollo
Apollo
12 Apollo
Apollo
14 Apollo
Apollo
15 Apollo
Apollo
16 Apollo
Apollo
17

Failed missions

Apollo 1
Apollo 1
(AS-204) Apollo
Apollo
13

List of missions Mission types Kennedy Space Center

Launch Complex 39

Canceled missions

v t e

People who have walked on the Moon

Neil Armstrong
Neil Armstrong
(CDR, Apollo
Apollo
11) Buzz Aldrin
Buzz Aldrin
(LMP, Apollo
Apollo
11) Pete Conrad
Pete Conrad
(CDR, Apollo
Apollo
12) Alan Bean
Alan Bean
(LMP, Apollo
Apollo
12) Alan Shepard
Alan Shepard
(CDR, Apollo
Apollo
14) Edgar Mitchell
Edgar Mitchell
(LMP, Apollo
Apollo
14) David Scott
David Scott
(CDR, Apollo
Apollo
15) James Irwin
James Irwin
(LMP, Apollo
Apollo
15) John Young (CDR, Apollo
Apollo
16) Charles Duke
Charles Duke
(LMP, Apollo
Apollo
16) Eugene Cernan
Eugene Cernan
(CDR, Apollo
Apollo
17) Harrison Schmitt
Harrison Schmitt
(LMP, Apollo
Apollo
17)

Moon
Moon
landing

Apollo
Apollo
program Apollo
Apollo
Lunar Module Lunar Roving Vehicle

v t e

United States
United States
human spaceflight programs

Active

International Space Station
International Space Station
(joint) Orion (in development)

Previous

X-15 (suborbital) Mercury Gemini Apollo Skylab Apollo–Soyuz (with USSR) Space Shuttle Shuttle- Mir
Mir
(with Russia)

Canceled

MISS Orion (nuclear) Dyna-Soar Manned Orbiting Laboratory National Aero-Space Plane Space Station Freedom
Space Station Freedom
(now ISS) Orbital Space Plane Project Constellation

v t e

Crewed spacecraft

Current

Russia

Soyuz

China

Shenzhou

In development

United States

Dragon 2 CST-100 Starliner New Shepard SpaceShipTwo BFR spaceship Orion Dream Chaser

Russia

Federation

India

ISRO Orbital Vehicle

Iran

manned project

Former

Soviet Union

Vostok Voskhod

United States

Mercury X-15 Gemini Apollo Space Shuttle SpaceShipOne

v t e

NASA
NASA
planetary exploration programs

Active

Explorers

Small Explorer

Flagship Mars Exploration Planetary Missions

Discovery New Frontiers Solar System
Solar System
Exploration

Ocean Worlds Exploration Program Voyager

Completed

Apollo Lunar Orbiter Lunar Precursor Mariner Mars Scout Mars Surveyor '98 MESUR Pioneer Planetary Observer Ranger Surveyor Viking

Cancelled

Constellation Grand Tour Mariner Mark II New Millennium Project Prometheus Voyager (Mars)

v t e

NASA

Policy and history

History

NACA (1915) National Aeronautics and Space Act
National Aeronautics and Space Act
(1958) Space Task Group
Space Task Group
(1958) Paine (1986) Rogers (1986) Ride (1987) Space Exploration Initiative
Space Exploration Initiative
(1989) Augustine (1990) U.S. National Space Policy (1996) CFUSAI (2002) CAIB (2003) Vision for Space Exploration
Vision for Space Exploration
(2004) Aldridge (2004) Augustine (2009)

General

Space Race Administrator and Deputy Administrator Chief Scientist Astronaut
Astronaut
Corps Budget Spin-off technologies NASA
NASA
TV NASA
NASA
Social Launch Services Program Kennedy Space Center

Vehicle Assembly Building Launch Complex 39 Launch Control Center

Johnson Space Center

Mission Control Lunar Sample Laboratory

Robotic programs

Past

Hitchhiker Mariner Mariner Mark II MESUR Mars Surveyor '98 New Millennium Lunar Orbiter Pioneer Planetary Observer Ranger Surveyor Viking Project Prometheus Mars Scout

Current

Living With a Star Lunar Precursor Robotic Program Earth Observing System Great Observatories program Explorer Small explorer Voyager Discovery New Frontiers Mars Exploration Rover

Human spaceflight programs

Past

X-15 (suborbital) Mercury Gemini Apollo Apollo–Soyuz Test Project (with the Soviet space program) Skylab Space Shuttle Shuttle–Mir (with  Roscosmos
Roscosmos
State Corporation) Constellation

Current

International Space Station Commercial Orbital Transportation Services
Commercial Orbital Transportation Services
(COTS) Commercial Crew Development
Commercial Crew Development
(CCDev) Orion

Individual featured missions (human and robotic)

Past

COBE Apollo
Apollo
11 Mercury 3 Mercury-Atlas 6 Magellan Pioneer 10 Pioneer 11 Galileo GALEX GRAIL WMAP Space Shuttle Sojourner rover Spirit rover LADEE MESSENGER Aquarius Cassini

Currently operating

MRO 2001 Mars Odyssey Dawn New Horizons Kepler International Space Station Hubble Space Telescope Spitzer RHESSI Swift THEMIS Mars Exploration Rover Curiosity rover

timeline

Opportunity rover

observed

GOES 14 Lunar Reconnaissance Orbiter GOES 15 Van Allen Probes SDO Juno Mars Science Laboratory

timeline

NuSTAR Voyager 1/2 WISE MAVEN MMS OSIRIS-REx

Future

JPSS James Webb Space Telescope WFIRST InSight Mars 2020 NISAR Transiting Exoplanet Survey Satellite Europa Clipper

Communications and navigation

Canberra Deep Space Atomic Clock Deep Space Network
Space Network
(Goldstone Madrid Near Earth Network Space Flight Operations Facility) Space Network

NASA
NASA
lists

Astronauts

by name by year Apollo
Apollo
astronauts

List of NASA
NASA
aircraft List of NASA
NASA
missions

unmanned missions

List of NASA
NASA
contractors List of United States
United States
rockets List of NASA
NASA
cancellations List of Space Shuttle
Space Shuttle
missions

crews

NASA
NASA
images and artwork

Earthrise The Blue Marble Family Portrait

Pale Blue Dot

Pillars of Creation Mystic Mountain Solar System
Solar System
Family Portrait The Day the Earth Smiled Fallen Astronaut Lunar plaques Pioneer plaques Voyager Golden Record NASA
NASA
insignia Gemini and Apollo
Apollo
medallions Mission patches

Category Commons Portal

v t e

The Moon

Physical properties

Internal structure Topography Atmosphere Gravity field

Hill sphere

Magnetic field Sodium tail Moonlight

Earthshine

Orbit

Orbital elements

Distance

Perigee & apogee

Nodes

Nodal period

Precession

Syzygy

New moon Full moon Eclipses

Lunar eclipse

Total penumbral lunar eclipse Tetrad

Solar eclipse Solar eclipses on the Moon Eclipse
Eclipse
cycle

Supermoon

Tide

Tidal force Tidal locking Tidal acceleration Tidal range

Lunar mansion

Surface & features

Selenography Terminator Hemispheres

Near side Far side

Poles

North pole South pole

Face

Maria

List

Mountains

Peak of eternal light

Valleys Volcanic features

Domes Calderas

Craters

List Ray systems Crater of eternal darkness Shackleton crater South Pole–Aitken basin

Soil

Swirls

Rilles Wrinkle ridges Rocks

Lunar basalt 70017

Water Space weathering

Micrometeorite Sputtering

Quakes Transient lunar phenomenon

Science

Observation Libration Lunar theory Origin

Giant-impact hypothesis

Theia Lunar magma ocean

Geology

Timescale

Late Heavy Bombardment

Lunar meteorites KREEP

Experiments

Lunar laser ranging ALSEP

Lunar sample displays

Apollo
Apollo
11 Apollo
Apollo
17

Exploration

Missions

Apollo
Apollo
program

Probes Landing

Conspiracy theories

Colonization Tourism

Time-telling

Lunar calendar Lunisolar calendar Month

Lunar month

Nodal period

Fortnight Sennight Lunar mansion

Phases & names

New Full

Names

Crescent Super & micro Blood Blue Black Dark Wet Tetrad

Related topics

Psychology

Lunar effect Moon
Moon
illusion Pareidolia

Man in the Moon Moon
Moon
rabbit

Craters named after people Memorials on the Moon Moon
Moon
in fiction Moon
Moon
in mythology

Hjúki and Bil

" Moon
Moon
is made of green cheese" Natural satellite Double planet Lilith (hypothetical second moon)

Category Moon
Moon
portal Earth sciences portal Solar System
Solar System
portal

v t e

Lunar rovers

Past

Lunokhod

Lunokhod 0 (1A) (1969, failed at start) Lunokhod 1
Lunokhod 1
(1970) Lunokhod 2
Lunokhod 2
(1973) Lunokhod 3
Lunokhod 3
(1977, cancelled)

Apollo

Lunar Roving Vehicle

Apollo
Apollo
15 (1971) Apollo
Apollo
16 (1972) Apollo 17
Apollo 17
(1972)

CLEP

Yutu (2013–15)

Planned

Chandrayaan-2
Chandrayaan-2
rover (2018) Chang'e 4
Chang'e 4
rover (2018) Andy (Astrobotic Technology) / Sorato / Uni (AngelicvM) (2019) ALINA (PTScientists) (2019) SLIM rover (2021) SELENE-R rover (2022)

Proposed

ATHLETE ECA (TeamIndus) Luna-Grunt rover Resource Prospector Scarab Space Exploration Vehicle

Related

Tank on the Moon
Moon
(2007 documentary) List of missions to the Moon Mars rover Rover (space exploration)

v t e

Spacecraft
Spacecraft
missions to the Moon

Programs

American

Apollo Lunar Orbiter Lunar Precursor Pioneer Ranger Surveyor

Chinese (CLEP) Indian (Chandrayaan) Japanese Russian

Luna-Glob

Soviet

Crewed Luna Zond Lunokhod

Current

Orbiters

ARTEMIS Lunar Reconnaissance Orbiter

Past

Orbiters

Apollo
Apollo
8 10 Apollo
Apollo
15 Subsatellite (PFS-1) Apollo
Apollo
16 Subsatellite (PFS-2) Chandrayaan-1 Chang'e 1 Chang'e 2 Clementine Explorer 35 Explorer 49 GRAIL Hiten LADEE Luna 10 11 12 14 19 22 Lunar Orbiter 1 2 3 4 5 Lunar Prospector SELENE
SELENE
(Kaguya, Okina & Ouna) SMART-1 Chang'e 5-T1
Chang'e 5-T1
(Service Module)

Flybys

4M Apollo
Apollo
13 AsiaSat-3 Cassini–Huygens Chang'e 5-T1
Chang'e 5-T1
(Xiaofei) Galileo Geotail ICE Luna 1 Luna 3 Mariner 10 Nozomi Pioneer 4 Pioneer 10 Ranger 5 STEREO Zond 3 5 6 7 8

Impactors

LCROSS Luna 2 MIP Ranger 4 6 7 8 9

Landers

Apollo Lunar Module
Apollo Lunar Module
x6 ALSEP (x5) and EASEP (x1) Chang'e 3 Luna 9 13 17 21 Surveyor 1 3 5 6 7

Rovers

Apollo
Apollo
15 16 17 Lunokhod 1 2 Yutu

Sample return

Apollo
Apollo
11 12 14 15 16 17 Luna 16 20 24

Human landing

Apollo
Apollo
11 12 14 15 16 17

Planned

EM-1 (2019)

Orion EM-1

ArgoMoon BioSentinel Cislunar Explorers CuSP CU-E3 EQUULEUS LunaH-Map Lunar Flashlight Lunar IceCube NEA Scout OMOTENASHI SkyFire Team Miles

Luna-Glob

Luna 25
Luna 25
(2019) Luna 26
Luna 26
(2021) Luna 27
Luna 27
(2022) Luna 28
Luna 28
(2025) Luna 29

Others

Chandrayaan-2
Chandrayaan-2
(2018) Chang'e 4
Chang'e 4
(2018) TESS (2018) Astrobotic / Hakuto
Hakuto
/ AngelicvM (2019) Chang'e 5
Chang'e 5
(2019) MX-1E (2019) PTScientists
PTScientists
(2019) Chang'e 6
Chang'e 6
(2020) SLIM (2021) DESTINY+
DESTINY+
(2022) EM-2 (2023) EM-3 (2023+)

Proposed

Baden-Württemberg 1 Blue Origin Blue Moon DSE-Alpha International Lunar Network Lunar Lander Lunar Mission One Lunar Orbital Platform-Gateway Lunar Orbital Station MoonLITE OpenLuna Resource Prospector SELENE-R SpaceIL Synergy Moon TeamIndus

Cancelled

Altair European Lunar Explorer LEO LK Lunar-A Lunar Observer Lunokhod 3 MoonRise Prospector SpaceX lunar tourism mission Ukrselena

See also

Colonization of the Moon Exploration of the Moon Google
Google
Lunar X Prize List of Apollo
Apollo
astronauts List of lunar probes List of artificial objects on the Moon List of missions to the Moon Lunar rover Moon
Moon
landing

Conspiracy theories

Manned missions in italics.

v t e

Spaceflight

General

Astrodynamics History

Timeline Space Race Asian Space Race Records Accidents and incidents

Space policy

China European Union India Japan Russia Soviet Union United States

Space law

Outer Space Treaty Rescue Agreement Space Liability Convention Registration Convention Moon
Moon
Treaty

Private spaceflight

Applications

Astronomy Earth observation

Archaeology Imagery and mapping Reconnaissance Weather and environment monitoring

Satellite
Satellite
communications

Internet Radio Telephone Television

Satellite
Satellite
navigation Commercial use of space Space launch
Space launch
market competition Militarisation of space Space architecture Space exploration Space research Space technology Space weather

Human spaceflight

General

Astronaut Life support system

Animals in space Bioastronautics Space suit

Extravehicular activity Weightlessness Space toilet Space tourism Space colonization

Programs

Vostok Mercury Voskhod Gemini Soyuz Apollo

Skylab Apollo–Soyuz

Space Shuttle Mir

Shuttle–Mir

International Space Station Shenzhou Tiangong

Health issues

Effect of spaceflight on the human body

Space adaptation syndrome

Health threat from cosmic rays Psychological and sociological effects of spaceflight Space and survival Space medicine Space nursing

Spacecraft

Launch vehicle Rocket Spaceplane Robotic spacecraft

Satellite Space probe Lander Rover Self-replicating spacecraft

Spacecraft
Spacecraft
propulsion

Rocket
Rocket
engine Electric propulsion Solar sail Gravity assist

Destinations

Sub-orbital Orbital

Geocentric Geosynchronous

Interplanetary Interstellar Intergalactic

Space launch

Direct ascent Escape velocity Expendable and reusable launch systems Launch pad Non-rocket spacelaunch Spaceport

Ground segment

Flight controller Ground station
Ground station
(Pass) Mission control center

Space agencies

 CoNAE  AEB  CSA  CNSA  ESA  CNES  DLR  ISRO  LAPAN  ISA  ISA  ASI  JAXA  NADA  KARI  SUPARCO  Roscosmos  SNSB  SSAU  UKSA  NASA

  Category   Portal   WikiProject

Authority control

GND: 4232143-8 NDL: 00956

.