Apollo Lunar Module
   HOME

TheInfoList



The Apollo Lunar Module, or simply Lunar Module (LM ), originally designated the Lunar Excursion Module (LEM), was the lander spacecraft that was flown between lunar orbit and the Moon's surface during the U.S.
Apollo program The Apollo program, also known as Project Apollo, was the third United States human spaceflight program carried out by the NASA, National Aeronautics and Space Administration (NASA), which succeeded in Moon landing, landing the first humans ...

Apollo program
. It was the first crewed spacecraft to operate exclusively in the airless vacuum of space, and remains the only crewed vehicle to land anywhere beyond Earth. Structurally and aerodynamically incapable of flight through Earth's atmosphere, the two-stage lunar module was ferried to lunar orbit attached to the
Apollo command and service module The Apollo command and service module (CSM) was one of two principal components of the United States Apollo (spacecraft), Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned ...
(CSM), about twice its mass. Its crew of two flew the complete lunar module from lunar orbit to the Moon's surface. During takeoff, the spent descent stage was used as a launch pad for the ascent stage which then
flew back to the command module
flew back to the command module
, after which it was also discarded. Overseen by
Grumman The Grumman Aircraft Engineering Corporation, later Grumman Aerospace Corporation, was a leading 20th century American producer of military and civilian aircraft An aircraft is a vehicle or machine that is able to fly Flies are insect ...
, the LM's development was plagued with problems that delayed its first uncrewed flight by about ten months and its first crewed flight by about three months. Still, the LM became the most reliable component of the Apollo–Saturn
space vehicle A space vehicle or spaceship is the combination of launch vehicle and spacecraft. The earliest space vehicles were expendable launch systems, consisting of a single or multistage rocket multistage sounding rocket Image:minuteman 3 stage ...
. The total cost of the LM for development and the units produced was $21.3 billion in 2016 dollars, adjusting from a nominal total of $2.2 billion using the NASA New Start Inflation Indices. Ten lunar modules were launched into space. Of these, six landed humans on the Moon from 1969 to 1972. The first two launched were test flights in
low Earth orbit A low Earth orbit (LEO) is an Earth-centered orbit near the planet, often specified as having a period Period may refer to: Common uses * Era, a length or span of time * Full stop (or period), a punctuation mark Arts, entertainment, and media ...
—the first without a crew, the second with one. Another was used by
Apollo 10 Apollo 10 (May 18–26, 1969) was a , the fourth crewed mission in the United States , and the second (after ) to orbit the Moon. It was the : a "dress rehearsal" for the first , testing all the components and procedures just short of actually l ...
for a dress rehearsal flight in low lunar orbit, without landing. One lunar module functioned as a lifeboat for the crew of
Apollo 13 Apollo 13 was the seventh crewed mission in the Apollo space program The Apollo program, also known as Project Apollo, was the third United States human spaceflight Human spaceflight (also referred to as manned spaceflight or cr ...
, providing life support and propulsion when their CSM was disabled by an oxygen tank explosion en route to the Moon, forcing the crew to abandon plans for landing. The six landed descent stages remain at their landing sites; their corresponding ascent stages crashed into the Moon following use. One ascent stage (Apollo 10's ''Snoopy'') was discarded in a
heliocentric orbit A heliocentric orbit (also called circumsolar orbit) is an orbit In physics, an orbit is the gravitationally curved trajectory of an physical body, object, such as the trajectory of a planet around a star or a natural satellite around a plan ...

heliocentric orbit
after its descent stage was discarded in lunar orbit. The other three LMs were burned up in the Earth's atmosphere: the four stages of
Apollo 5 Apollo 5 (January 22, 1968, also known as AS-204), was the first uncrewed flight of the (LM), which would later carry s to the lunar surface. It lifted off with a rocket on an Earth-orbital flight. Objectives The Apollo 5 mission tested the lu ...

Apollo 5
and
Apollo 9 Apollo 9 (March 3–13, 1969) was the third human spaceflight Human spaceflight (also referred to as manned spaceflight or crewed spaceflight) is spaceflight with a crew or passengers aboard a spacecraft, the spacecraft being operated dir ...

Apollo 9
each re-entered separately, while Apollo 13's ''Aquarius'' re-entered complete, following emergency maneuvers.


Operational profile

At launch, the lunar module sat directly beneath the
command and service module The Apollo command and service module (CSM) was one of two principal components of the United States Apollo (spacecraft), Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned ...
(CSM) with legs folded, inside the Spacecraft-to-LM adapter (SLA) attached to the
S-IVB The S-IVB was the third stage on the Saturn V and second stage on the Saturn IB launch vehicles. Built by the Douglas Aircraft Company, it had one J-2 (rocket engine), J-2 rocket engine. For lunar missions it was fired twice: first for Earth orbi ...
third stage of the
Saturn V Saturn V was an American human-rated Human-rating certification, also known as man-rating or crew-rating, is the certification of a spacecraft or launch vehicle as capable of safely transporting humans. There is no one particular standard for ...

Saturn V
rocket. There it remained through Earth parking orbit and the
trans-lunar injection A trans-lunar injection (TLI) is a propulsive maneuver used to set a spacecraft File:Space Shuttle Columbia launching.jpg, 275px, The US Space Shuttle flew 135 times from 1981 to 2011, supporting Spacelab, ''Mir'', the Hubble Space Telescope, ...

trans-lunar injection
(TLI) rocket burn to send the craft toward the Moon. Soon after TLI, the SLA opened; the CSM separated, turned around, came back to dock with the lunar module, and extracted it from the S-IVB. During the flight to the Moon, the docking hatches were opened and the lunar module pilot entered the LM to temporarily power up and test all systems except propulsion. The lunar module pilot performed the role of an engineering officer, monitoring the systems of both spacecraft. After achieving a lunar parking orbit, the commander and LM pilot entered and powered up the LM, replaced the hatches and docking equipment, unfolded and locked its landing legs, and separated from the CSM, flying independently. The commander operated the flight controls and engine throttle, while the lunar module pilot operated other spacecraft systems and kept the commander informed about systems status and navigational information. After the command module pilot visually inspected the
landing gear Landing gear is the undercarriage of an aircraft An aircraft is a vehicle or machine that is able to fly Flies are insect Insects or Insecta (from Latin Latin (, or , ) is a classical language belonging to the Italic langua ...
, the LM was withdrawn to a safe distance, then rotated until the Descent propulsion system, descent engine was pointed forward into the direction of travel. A 30-second descent orbit insertion burn was performed to reduce speed and drop the LM's perilune to within about of the surface, about uprange of the landing site. As the craft approached perilune, the Pintle injector, descent engine was started again to begin powered descent. During this time, the crew flew on their backs, depending on the computer to slow the craft's forward and vertical velocity to near zero. Control was exercised with a combination of engine throttling and attitude thrusters, guided by the computer with the aid of landing radar. During braking, the LM descended to about , then, in the final approach phase, down to about . During final approach, the vehicle pitched over to a near-vertical position, allowing the crew to look forward and down to see the lunar surface for the first time. Astronauts flew Apollo spacecraft manually only during the lunar approach. The final landing phase began about uprange of the targeted landing site. At this point, manual control was enabled for the commander, who had enough liquid rocket propellant, propellant to hover for up to two minutes to survey where the computer was taking the craft and make any necessary corrections. If necessary, landing could have been aborted at almost any time by jettisoning the descent stage and firing the ascent engine to climb back into orbit for an emergency return to the CSM. Finally, one or more of three probes extending from footpads on the legs of the lander touched the surface, activating the contact indicator light which signaled the commander to manually shut off the descent engine, allowing the LM to settle onto the surface. On touchdown, the probes would be bent as much as 180 degrees, or even break off. The original design used the probes on all four legs, but starting with the first landing (LM-5 on Apollo 11), the one at the ladder was removed out of concern that the bent probe after landing might puncture an astronaut's suit as he descended or stepped off the ladder. The original extravehicular activity (EVA) plan, up through at least 1966, was for only one astronaut to leave the LM while the other remained inside "to maintain communications". Communications were eventually deemed to be reliable enough to allow both crew members to walk on the surface, leaving the spacecraft to be only remotely attended by Mission Control. Beginning with Apollo 14, extra LM propellant was made available for the powered descent and landing, by using the CSM engine to achieve the perilune. After the spacecraft undocked, the CSM raised and circularized its orbit for the remainder of the mission. When ready to leave the Moon, the LM's ascent engine fired, leaving the descent stage on the Moon's surface. After a few course correction burns, the LM rendezvoused with the CSM and docked to transfer the crew and rock samples. Having completed its job, the ascent stage was separated. The Apollo 10 ascent stage engine was fired until its fuel was used up, sending it past the Moon into a
heliocentric orbit A heliocentric orbit (also called circumsolar orbit) is an orbit In physics, an orbit is the gravitationally curved trajectory of an physical body, object, such as the trajectory of a planet around a star or a natural satellite around a plan ...

heliocentric orbit
. The Apollo 11 ascent stage was left in lunar orbit to eventually crash; all subsequent ascent stages (except for Apollo 13) were intentionally steered into the Moon to obtain readings from seismometers placed on the surface.


History

The Lunar Module (originally designated the Lunar Excursion Module, known by the Acronym and initialism, acronym LEM) was designed after NASA Project Apollo#Choosing a mission mode, chose to reach the Moon via Lunar Orbit Rendezvous (LOR) instead of the direct ascent or Earth Orbit Rendezvous (EOR) methods. Both direct ascent and EOR would have involved landing a much heavier, complete Apollo spacecraft on the Moon. Once the decision had been made to proceed using LOR, it became necessary to produce a separate craft capable of reaching the lunar surface and ascending back to lunar orbit.


Contract letting

In July 1962, eleven firms were invited to submit proposals for the LEM. Nine companies responded in September, answering 20 questions posed by the NASA RFP in a 60-page limited technical proposal.
Grumman The Grumman Aircraft Engineering Corporation, later Grumman Aerospace Corporation, was a leading 20th century American producer of military and civilian aircraft An aircraft is a vehicle or machine that is able to fly Flies are insect ...
was awarded the contract officially on November 7, 1962. Grumman had begun lunar orbit rendezvous studies in the late 1950s and again in 1961. The contract cost was expected to be around $350 million. There were initially four major subcontractors: Bell Aerosystems (Ascent Propulsion System, ascent engine), Hamilton Standard (environmental control systems), Marquardt Corporation, Marquardt (reaction control system) and Rocketdyne (Descent Propulsion System, descent engine). The Apollo PGNCS, Primary Guidance, Navigation and Control System (PGNCS) was developed by the Charles Stark Draper Laboratory, MIT Instrumentation Laboratory; the Apollo Guidance Computer was manufactured by Raytheon (a similar guidance system was used in the Apollo command and service module, command module). A backup navigation tool, the Apollo Abort Guidance System, Abort Guidance System (AGS), was developed by TRW.


Design phase

The Apollo Lunar Module was chiefly designed by Grumman aerospace engineer Thomas J. Kelly (aerospace engineer), Thomas J. Kelly. The first LEM design looked like a smaller version of the
Apollo command and service module The Apollo command and service module (CSM) was one of two principal components of the United States Apollo (spacecraft), Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned ...
(a cone-shaped cabin atop a cylindrical propulsion section) with folding legs. The second design invoked the idea of a helicopter cockpit with large curved windows and seats, to improve the astronauts' visibility for hover and landing. This also included a second, forward docking port, allowing the LEM crew to take an active role in docking with the CSM. As the program continued, there were numerous redesigns to save weight, improve safety, and fix problems. First to go were the heavy cockpit windows and the seats; the astronauts would stand while flying the LEM, supported by a cable and pulley system, with smaller triangular windows giving them sufficient visibility of the landing site. Later, the redundant forward docking port was removed, which meant the Command Pilot gave up active control of the docking to the Command Module Pilot; he could still see the approaching CSM through a small overhead window. Egress while wearing bulky Extra-vehicular activity, Extra-Vehicular Activity (EVA) spacesuits was eased by a simpler forward hatch (32 x 32 inches). The configuration was frozen in April 1963, when the ascent and descent engine designs were decided. In addition to Rocketdyne, a parallel program for the Descent propulsion system, descent engine was ordered from TRW Inc.#Space exploration, Space Technology Laboratories (TRW) in July 1963, and by January 1965 the Rocketdyne contract was canceled. Power was initially to be produced by fuel cells built by Pratt and Whitney similar to the CSM, but in March 1965 these were discarded in favor of an all-battery design. The initial design had three landing legs, the lightest possible configuration. But as any particular leg would have to carry the weight of the vehicle if it landed at a significant angle, this was also the least stable configuration if one of the legs were damaged during landing. The next landing gear design iteration had five legs and was the most stable configuration for landing on an unknown terrain. That configuration, however, was too heavy and the designers compromised on four landing legs. In June 1966, the name was changed to Lunar Module (LM), eliminating the word "Excursion". According to George Low, Manager of the Apollo Spacecraft Program Office, this was because NASA was afraid that the word "Excursion" might lend a frivolous note to Apollo. After the name change from "LEM" to "LM", the pronunciation of the abbreviation did not change, as the habit became ingrained among engineers, the astronauts, and the media to universally pronounce "LM" as "lem" which is easier than saying the letters individually.


Astronaut training

Comparing landing on the Moon to "a hovering operation", Gus Grissom said in 1963 that although most early astronauts were fighter pilots, "now we're wondering if the pilot making this first moon landing shouldn't be a highly experienced helicopter pilot". To allow astronauts to learn lunar landing techniques, NASA contracted Bell Aerosystems in 1964 to build the Lunar Landing Research Vehicle (LLRV), which used a gimbal-mounted vertical jet engine to counter five-sixths of its weight to simulate the Moon's gravity, in addition to its own hydrogen peroxide thrusters to simulate the LM's descent engine and attitude control. Successful testing of two LLRV prototypes at the Dryden Flight Research Center led in 1966 to three production Lunar Landing Training Vehicles (LLTV) which along with the LLRV's were used to train the astronauts at the Houston Manned Spacecraft Center. This aircraft proved fairly dangerous to fly, as three of the five were destroyed in crashes. It was equipped with a rocket-powered ejection seat, so in each case the pilot survived, including the first man to walk on the Moon, Neil Armstrong.


Development flights

LM-1 was built to make the first uncrewed flight for propulsion systems testing, launched into low Earth orbit atop a Saturn IB. This was originally planned for April 1967, to be followed by the first crewed flight later that year. But the LM's development problems had been underestimated, and LM-1's flight was delayed until January 22, 1968, as
Apollo 5 Apollo 5 (January 22, 1968, also known as AS-204), was the first uncrewed flight of the (LM), which would later carry s to the lunar surface. It lifted off with a rocket on an Earth-orbital flight. Objectives The Apollo 5 mission tested the lu ...

Apollo 5
. At that time, LM-2 was held in reserve in case the LM-1 flight failed, which did not happen. LM-3 now became the first crewed LM, again to be flown in low Earth orbit to test all the systems, and practice the separation, rendezvous, and docking planned for Apollo 8 in December 1968. But again, last-minute problems delayed its flight until
Apollo 9 Apollo 9 (March 3–13, 1969) was the third human spaceflight Human spaceflight (also referred to as manned spaceflight or crewed spaceflight) is spaceflight with a crew or passengers aboard a spacecraft, the spacecraft being operated dir ...

Apollo 9
on March 3, 1969. A second, higher Earth orbit crewed practice flight had been planned to follow LM-3, but this was canceled to keep the program timeline on track.
Apollo 10 Apollo 10 (May 18–26, 1969) was a , the fourth crewed mission in the United States , and the second (after ) to orbit the Moon. It was the : a "dress rehearsal" for the first , testing all the components and procedures just short of actually l ...
launched on May 18, 1969, using LM-4 for a "dress rehearsal" for the lunar landing, practicing all phases of the mission except powered descent initiation through takeoff. The LM descended to above the lunar surface, then jettisoned the descent stage and used its ascent engine to return to the CSM.


Production flights

The first crewed lunar landing occurred on July 20, 1969, in the Apollo 11 Lunar Module Eagle, LM-5 ''Eagle''. Four days later, the Apollo 11 crew in the command module Columbia, command module ''Columbia'' splashed down in the Pacific Ocean, completing Apollo program#Background, President John F. Kennedy's goal: "...before this decade is out, of landing a man on the Moon and returning him safely to the Earth". This was followed by landings by Apollo 12 (LM-6 ''Intrepid'') and Apollo 14 (LM-8 ''Antares''). In April 1970, the
Apollo 13 Apollo 13 was the seventh crewed mission in the Apollo space program The Apollo program, also known as Project Apollo, was the third United States human spaceflight Human spaceflight (also referred to as manned spaceflight or cr ...
LM-7 ''Aquarius'' played an unexpected role in saving the lives of the three astronauts after an oxygen tank in the Apollo command and service module#Service module, service module ruptured, disabling the CSM. ''Aquarius'' served as a "lifeboat" for the astronauts during their return to Earth. Its Pintle injector, descent stage engine was used to replace the crippled CSM Service Propulsion System engine, and its batteries supplied power for the trip home and recharged the Command Module's batteries critical for reentry. The astronauts splashed down safely on April 17, 1970. The LM's systems, designed to support two astronauts for 45 hours (including twice depressurization and repressurization causing loss of oxygen supply), actually stretched to support three astronauts for 90 hours (without depressurization and repressurization and loss of oxygen supply). Hover times were maximized on the last four landing missions by using the Service Module engine to perform the initial descent orbit insertion burn 22 hours before the LM separated from the CSM, a practice begun on Apollo 14. This meant that the complete spacecraft, including the CSM, orbited the Moon with a perilune, enabling the LM to begin its powered descent from that altitude with a full load of descent stage propellant, leaving more reserve propellant for the final approach. The CSM would then raise its perilune back to the normal .


Extended J-class missions

The extended lunar module (ELM) used on the final three List of Apollo missions#Alphabetical mission types, "J-class missions" — Apollo 15, Apollo 16, 16, and Apollo 17, 17 — was upgraded to land larger payloads and stay longer on the lunar surface. The descent engine thrust was increased by the addition of a extension to the engine bell, and the descent propellant tanks were enlarged. A waste storage tank was added to the descent stage, with plumbing from the ascent stage. These upgrades allowed stays of up to 75 hours on the Moon. The Lunar Roving Vehicle was folded up and carried in Quadrant 1 of the descent stage. It was deployed by the astronauts after landing, allowing them to explore large areas and return a greater variety of lunar samples.


Specifications

Weights given here are an average for the original pre-ELM spec vehicles. For specific weights for each mission, see the individual mission articles.


Ascent stage

The ascent stage contained the crew cabin with instrument panels and flight controls. It contained its own Ascent Propulsion System (APS) engine and two hypergolic propellant tanks for return to lunar orbit and rendezvous with the
Apollo command and service module The Apollo command and service module (CSM) was one of two principal components of the United States Apollo (spacecraft), Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned ...
. It also contained a Reaction Control System (RCS) for attitude control, attitude and translation (geometry), translation control, which consisted of sixteen hypergolic thrusters similar to those used on the Service Module, mounted in four quads, with their own propellant supply. A forward EVA hatch provided access to and from the lunar surface, while an overhead hatch and docking port provided access to and from the Command Module. Internal equipment included an environmental control (life support) system; a VHF communications system with two antennas for communication with the Command Module; a unified S-band system and steerable parabolic antenna, parabolic dish antenna for communication with Earth; an EVA antenna resembling a miniature parasol which relayed communications from antennas on the astronauts' Primary life support system, Portable Life Support Systems through the LM; Apollo PGNCS, primary (PGNCS) and Apollo Abort Guidance System, backup (AGS) guidance and navigation systems; an Apollo PGNCS#Optical unit, Alignment Optical Telescope for visually determining the spacecraft orientation; rendezvous radar with its own steerable dish antenna; and an system for active thermal control. Electrical storage batteries, cooling water, and breathing oxygen were stored in amounts sufficient for a lunar surface stay of 48 hours initially, extended to 75 hours for the later missions. During rest periods while parked on the Moon, the crew would sleep on hammocks slung crosswise in the cabin. The return payload included the lunar rock and soil samples collected by the crew (as much as on Apollo 17), plus their exposed photographic film. * Crew: 2 * Crew cabin volume: * Habitable volume: * Crew compartment height: * Crew compartment depth: * Height: * Width: * Depth: * Mass, dry: * Mass, gross: * Atmosphere: 100% oxygen at * Water: two storage tanks * Coolant: of ethylene glycol / water solution * Thermal Control: one active water-ice sublimator * RCS propellant mass: * RCS thrusters: sixteen x in four quads * RCS propellants: Aerozine 50 fuel / Dinitrogen tetroxide (N2O4) oxidizer * RCS specific impulse: * APS propellant mass: stored in two propellant tanks * APS engine: Bell Aircraft, Bell Aerospace Ascent Propulsion System, LM Ascent Engine (LMAE) and Pratt & Whitney Rocketdyne, Rocketdyne LMAE Injectors * APS thrust: * APS propellants: Aerozine 50 fuel / Dinitrogen Tetroxide oxidizer * APS pressurant: two helium tanks at * APS specific impulse: * APS Delta-v, delta-V: * Thrust-to-weight ratio at liftoff: 2.124 (in lunar gravity) * Batteries: two 28–32 volt, 296 ampere hour Silver-zinc batteries; each * Power: 28 V DC, 115 V 400 Hz AC


Descent stage

The descent stage's primary job was to support a powered landing and surface extravehicular activity. When the excursion was over, it served as the launch pad for the ascent stage. Its octagonal shape was supported by four folding landing gear legs, and contained a throttleable Descent Propulsion System (DPS) engine with four hypergolic propellant tanks. A continuous-wave radar, continuous-wave Doppler radar antenna was mounted by the engine heat shield on the bottom surface, to send altitude and rate of descent data to the guidance system and pilot display during the landing. Almost all external surfaces, except for the top, platform, ladder, descent engine and heat shield, were covered in amber, dark (reddish) amber, black, silver, and yellow aluminized Kapton foil blankets for thermal insulation. The number 1 (front) landing leg had an attached platform (informally known as the "porch") in front of the ascent stage's EVA hatch and a ladder, which the astronauts used to ascend and descend between the cabin to the surface. The footpad of each landing leg incorporated a surface contact sensor probe, which signaled the commander to switch off the descent engine. (The probe was omitted from the number 1 leg of every landing mission, to avoid a suit-puncture hazard to the astronauts, as the probes tended to break off and protrude upwards from the surface.) Equipment for the lunar exploration was carried in the Modular Equipment Stowage Assembly (MESA), a drawer mounted on a hinged panel dropping out of the lefthand forward compartment. Besides the astronaut's surface excavation tools and sample collection boxes, the MESA contained a television camera with a tripod; as the commander opened the MESA by pulling on a lanyard while descending the ladder, the camera was automatically activated to send the first pictures of the astronauts on the surface back to Earth. A Lunar Flag Assembly, United States flag for the astronauts to erect on the surface was carried in a container mounted on the ladder of each landing mission. The Early Apollo Surface Experiments Package (EASEP) (later the Apollo Lunar Surface Experiments Package (ALSEP)), was carried in the opposite compartment behind the LM. An external compartment on the right front panel carried a deployable S-band antenna which, when opened looked like an inverted umbrella on a tripod. This was not used on the first landing due to time constraints, and the fact that acceptable communications were being received using the LM's S-band antenna, but was used on Apollo 12 and 14. A hand-pulled Modular Equipment Transporter (MET), similar in appearance to a golf cart, was carried on Apollo 13 and 14 to facilitate carrying the tools and samples on extended moonwalks. On the extended missions (Apollo 15 and later), the antenna and TV camera were mounted on the Lunar Roving Vehicle, which was carried folded up and mounted on an external panel. Compartments also contained replacement Primary Life Support System, Portable Life Support System (PLSS) batteries and extra lithium hydroxide canisters on the extended missions. * Height: (plus landing probes) * Width/depth, minus landing gear: * Width/depth, landing gear extended: * Mass including propellant: * Water: one storage tank * DPS propellant mass: stored in four propellant tanks * DPS engine: TRW Inc., TRW Descent Propulsion System, LM descent engine (LMDE) * DPS thrust: , throttleable between 10% and 60% of full thrust * DPS propellants: Aerozine 50 fuel / nitrogen tetroxide oxidizer * DPS pressurant: one supercritical helium tank at * DPS specific impulse: 311 s (3,050 N⋅s/kg) * DPS Delta-v, delta-V: * Batteries: four (Apollo 9-14) or five (Apollo 15-17) 28–32 V, 415 A⋅h silver-zinc batteries; each


Lunar modules produced


Proposed derivatives


Apollo Telescope Mount

One proposed Apollo application was an orbital solar telescope constructed from a surplus LM with its descent engine replaced with a telescope controlled from the ascent stage cabin, the landing legs removed and four "windmill" solar panels extending from the descent stage quadrants. This would have been launched on an uncrewed Saturn 1B, and docked with a crewed
command and service module The Apollo command and service module (CSM) was one of two principal components of the United States Apollo (spacecraft), Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned ...
, named the Apollo Telescope Mission (ATM). This idea was later transferred to the original wet workshop design for the ''Skylab'' orbital workshop and renamed the Apollo Telescope Mount to be docked on a side port of the workshop's multiple docking adapter (MDA). When Skylab changed to a "dry workshop" design pre-fabricated on the ground and launched on a Saturn V, the telescope was mounted on a hinged arm and controlled from inside the MDA. Only the octagonal shape of the telescope container, solar panels and the Apollo Telescope Mount name were kept, though there was no longer any association with the LM.


LM Truck

The Apollo LM Truck (also known as Lunar Payload Module) was a stand-alone LM descent stage intended to deliver up to of payload to the Moon for an uncrewed landing. This technique was intended to deliver equipment and supplies to a permanent crewed lunar base. As originally proposed, it would be launched on a Saturn V with a full Apollo crew to accompany it to lunar orbit and guide it to a landing next to the base; then the base crew would unload the "truck" while the orbiting crew returned to Earth.Apollo LM Truck on Mark Wade's Encyclopedia Astronautica
– Description of adapted LM descent stage for the uncrewed transport of cargo to a permanent lunar base. In later AAP plans, the LPM would have been delivered by an uncrewed lunar ferry vehicle.


Depiction in film and television

The 1995 Ron Howard film ''Apollo 13 (film), Apollo 13'', a dramatization of that mission starring Tom Hanks, Kevin Bacon, and Bill Paxton, was filmed using realistic spacecraft interior reconstructions of the ''Aquarius'' and the Command Module ''Odyssey''. The development and construction of the lunar module is dramatized in the 1998 miniseries ''From the Earth to the Moon (miniseries), From the Earth to the Moon'' episode entitled From the Earth to the Moon (miniseries)#Episodes, "Spider". This is in reference to LM-3, used on Apollo 9, which the crew named ''Spider'' after its spidery appearance. The unused LM-13 stood in during the teleplay to depict LM-3 and LM-5, ''Eagle'', used by Apollo 11. Apollo 11 Lunar Module Eagle, Lunar Module ''Eagle'' is depicted in the 2018 film ''First Man (film), First Man'', a biopic of Neil Armstrong.


Media

File:Lunar Module Equipment Locations 1 of 2.jpg, Equipment location plans (1 of 2) File:Lunar Module Equipment Locations 2 of 2.jpg, Equipment location plans (2 of 2) File:Lunar Module Control Displays.jpg, Controls plans File:Lunar Module Landing Gear plans.jpg, Landing Gear plans File:AP11 FINAL APPROACH.ogv, Neil Armstrong lands the Apollo 11 Lunar Module Eagle, Lunar Module ''Eagle'' on the Moon, July 20, 1969, creating Tranquility Base. Starts approximately 6200 feet from the surface. File:Apollo 15 landing on the Moon.ogg, David Scott lands Apollo 15 Lunar Module ''Falcon'' on the Moon on July 30, 1971, seen from the perspective of the Lunar Module Pilot. Starts at approximately 5000 feet from the surface. File:Apollo 15 liftoff from the Moon.ogg, Apollo 15 Lunar Module ''Falcon'' lifts off from the Moon, August 2, 1971. View from TV camera on the Lunar Roving Vehicle. File:Apollo 15 liftoff from inside LM.ogg, Apollo 15 Lunar Module liftoff. View from inside ''Falcon''. File:Ap17-ascent.ogv, Apollo 17 Lunar Module ''Challenger'' liftoffs from the Moon on December 14, 1972. View from TV camera on the Lunar Roving Vehicle.


See also

* List of crewed lunar lander designs * LK (spacecraft) * Lunar Escape Systems


References


Further reading

* Kelly, Thomas J. (2001). ''Moon Lander: How We Developed the Apollo Lunar Module'' (Smithsonian History of Aviation and Spaceflight Series). Smithsonian Institution Press. . * Baker, David (1981). ''The History of Manned Space Flight''. Crown Publishers. * Brooks, Courtney J., Grimwood, James M. and Swenson, Loyd S. Jr (1979
''Chariots for Apollo: A History of Manned Lunar Spacecraft''
NASA SP-4205. *Haeuplik-Meusburger S. (2011). Architecture for Astronauts. An Activity-based Approach. Springer

* Pellegrino, Charles R. and Stoff, Joshua. (1985) ''Chariots for Apollo: The Untold Story Behind the Race to the Moon''. Atheneum. (This is not the NASA history series book of the same base title, above, but a totally unrelated work.) * Sullivan, Scott P. (2004) ''Virtual LM: A Pictorial Essay of the Engineering and Construction of the Apollo Lunar Module''. Apogee Books. * Stoff, Joshua. (2004) ''Building Moonships: The Grumman Lunar Module''. Arcadia Publishing. * Stengel, Robert F. (1970). ''Manual Attitude Control of the Lunar Module'', J. Spacecraft and Rockets, Vol. 7, No. 8, pp. 941–948.


External links


NASA Lunar Module Documentation
Lunar Surface Journal
Google Moon overview of Apollo landing sites

NASA catalog: Apollo 14 Lunar Module

Demonstration of the Lunar Excursion Module and explanation of its systems
(1966, Thomas Kelly at Grumman plant on Long Island, episode of ''Science Reporter'', MIT film posted to YouTube)

– A site "dedicated to the men and women that designed, built and tested the Lunar Module at Grumman Aerospace Corporation, Bethpage, New York"

By D.C. Agle, ''Air & Space Magazine'', September 1, 2001 - Overview of LM descent
Apollo 11 LM Structures handout for LM-5
(PDF) – Training document given to astronauts which illustrates all discrete LM structures
Apollo Operations Handbook, Lunar Module (LM 10 and Subsequent), Volume One. Subsystems Data
(PDF) Manufacturers Handbook covering the systems of the LM.
Apollo Operations Handbook, Lunar Module (LM 11 and Subsequent), Volume Two. Operational Procedures
Manufacturers Handbook covering the procedures used to fly the LM.

– Checklist detailing how to prepare the LM for activation and flight during a mission

video


Games


Perilune
3D Procedural Lunar Lander Simulation
Lander
On-line 2D Lunar Module Landing Simulation Game
Easy Lander
3D Lunar Module Landing Simulation Game {{NASA space program American inventions 1969 in spaceflight 1970 in spaceflight 1971 in spaceflight 1972 in spaceflight Crewed spacecraft Soft landings on the Moon Apollo program hardware VTVL rockets Articles containing video clips Spacecraft launched by Saturn rockets Spacecraft that orbited the Moon