Allotropes of boron
   HOME

TheInfoList



OR:

Boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
can be prepared in several crystalline and
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' ("wi ...
forms. Well known crystalline forms are α-rhombohedral (α-R), β-rhombohedral (β-R), and β-tetragonal (β-T). In special circumstances, boron can also be synthesized in the form of its α-tetragonal (α-T) and γ-orthorhombic (γ)
allotropes Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: th ...
. Two amorphous forms, one a finely divided powder and the other a glassy solid, are also known. Although at least 14 more allotropes have been reported, these other forms are based on tenuous evidence or have not been experimentally confirmed, or are thought to represent mixed allotropes, or boron frameworks stabilized by impurities. Whereas the β-rhombohedral phase is the most stable and the others are metastable, the transformation rate is negligible at room temperature, and thus all five phases can exist at ambient conditions. Amorphous powder boron and
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. Stru ...
β-rhombohedral boron are the most common forms. The latter allotrope is a very hard
Vickers hardness The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness t ...
comparable to that of cubic
boron nitride Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal ...
grey material, about ten percent lighter than aluminium and with a melting point (2080 °C) several hundred degrees higher than that of steel. Elemental boron has been found in star dust and meteorites, but does not exist in the high oxygen environment of Earth. It is difficult to extract from its compounds. The earliest methods involved reduction of
boric oxide Boron trioxide or diboron trioxide is the oxide of boron with the formula . It is a colorless transparent solid, almost always glassy (amorphous), which can be crystallized only with great difficulty. It is also called boric oxide or boria. It h ...
with metals such as
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
or
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
. However, the product is almost always contaminated with metal
boride A boride is a compound between boron and a less electronegative element, for example silicon boride (SiB3 and SiB6). The borides are a very large group of compounds that are generally high melting and are covalent more than ionic in nature. Some bo ...
s. Pure boron can be prepared by reducing volatile boron halides with
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
at high temperatures. Very pure boron, for use in the
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
industry, is produced by the decomposition of
diborane Diborane(6), generally known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracte ...
at high temperatures, followed by purification via
zone melting Zone melting (or zone refining, or floating-zone method, or floating-zone technique) is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molte ...
or the Czochralski process. Even more difficult to prepare are single
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s of pure boron phases, due to polymorphism and the tendency of boron to react with impurities; typical crystal size is ~0.1 mm.


Summary of properties

Image:Borphase.jpg, An extract of a phase diagram for boron (α and β are the rhombohedral phases; T is β-tetragonal)Other (different) phase diagrams have been reported:, ; Image:Alfaboron.jpg, Structure of α-R boron Image:Betaboron.jpg, Structure of β-R boron Image:Gamma-bor.jpg, Structure of γ-boron


α-rhombohedral boron

α-rhombohedral boron has a unit cell of twelve boron atoms. The structure consists of icosahedra in which each boron atom has five nearest neighbors within the icosahedron. If the bonding were the conventional
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
type then each boron would have donated five electrons. However, boron has only three valence electrons, and it is thought that the bonding in the icosahedra is achieved by the so-called 3-center electron-deficient bonds where the electron charge is accumulated at the center of a triangle formed by three adjacent atoms. The isolated icosahedra are not stable, due to the nonuniformity of the
honeycomb A honeycomb is a mass of Triangular prismatic honeycomb#Hexagonal prismatic honeycomb, hexagonal prismatic Beeswax, wax cells built by honey bees in their beehive, nests to contain their larvae and stores of honey and pollen. beekeeping, Beekee ...
; thus boron is not a molecular solid, but the icosahedra in it are connected by strong covalent bonds.


α-tetragonal boron

Pure α-tetragonal can only be synthesized as thin layers deposited on an underlying substrate of isotropic boron carbide (B50C2) or nitride (B50N2). Most examples of α-tetragonal boron are in fact boron-rich carbide or nitrides.


β-rhombohedral boron

β-rhombohedral boron has a unit cell containing 105–108 (ideally exactly 105) atoms. Most atoms form B12 discrete icosahedra; a few form partially interpenetrating icosahedra, and there are two deltahedral B10 units, and a single central B atom. For a long time, it was unclear whether the α or β phase is most stable at ambient conditions; however, gradually a consensus was reached that the β phase is the most thermodynamically stable allotrope.


β-tetragonal boron

The β phase was produced in 1960 by hydrogen reduction of BBr3 on hot
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isolat ...
,
rhenium Rhenium is a chemical element with the symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one ...
or
tantalum Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as ''tantalium'', it is named after Tantalus, a villain in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that is ...
filaments at temperatures 1270–1550 °C (i.e. chemical vapor deposition). Further studies have reproduced the synthesis and confirmed the absence of impurities in this phase.


γ-boron

The γ-phase can be described as a NaCl-type arrangement of two types of clusters, B12 icosahedra and B2 pairs. It can be produced by compressing other boron phases to 12–20 GPa and heating to 1500–1800 °C, and remains stable at ambient conditions. There is evidence of significant charge transfer from B2 pairs to the B12 icosahedra in this structure; in particular, lattice dynamics suggests the presence of significant long-range electrostatic interactions. This phase was reported by Wentorf in 1965; however, neither structure nor chemical composition were established. The structure was solved using ''
ab initio ''Ab initio'' ( ) is a Latin term meaning "from the beginning" and is derived from the Latin ''ab'' ("from") + ''initio'', ablative singular of ''initium'' ("beginning"). Etymology Circa 1600, from Latin, literally "from the beginning", from ab ...
''
crystal structure prediction Crystal structure prediction (CSP) is the calculation of the crystal structures of solids from first principles. Reliable methods of predicting the crystal structure of a compound, based only on its composition, has been a goal of the physical scien ...
calculations and confirmed using single crystal X-ray diffraction.


Cubic boron

Sullenger ''et al.'' (1969) and McConville ''et al.'' (1976) reported a cubic allotrope of boron, obtained in argon plasma experiments, with a unit cell of 1705±3 atoms and a density of 2.367 g/cm3. While this allotrope is occasionally mentioned in the literature, no subsequent work appears to have been published either confirming or discrediting its existence. Donohue (1982) commented that the number of atoms in the unit cell did not appear to be icosahedrally related (the icosahedron being a motif common to boron structures).


High-pressure superconducting phase

Compressing boron above 160 GPa produces a boron phase with an as yet unknown structure. Contrary to other phases, which are
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s, this phase is a
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
and becomes a superconductor with a critical temperature increasing from 6 K at 160 GPa to 11 K at 250 GPa. This structural transformation occurs at pressures at which theory predicts the icosahedra will dissociate. Speculation as to the structure of this phase has included face-centred cubic (analogous to Al); α-Ga, and body-centred tetragonal (analogous to In). It has also been suggested that the nonmetal-metal transition is simply the result of a
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
closure, as occurs with iodine, rather than a structural transition.


Borophene

There exist several two-dimensional forms of boron (together called
borophene Borophene is a crystalline atomic monolayer of boron, i.e., it is a two-dimensional allotrope of boron and also known as ''boron sheet''. First predicted by theory in the mid-1990s, different borophene structures were experimentally confirmed ...
s), and even more are predicted theoretically.


Borospherene

The discovery of the quasispherical allotropic molecule
borospherene Borospherene (B40) is a cluster molecule containing 40 boron atoms. It is similar to buckminsterfullerene, the "spherical" carbon structure, but with a different symmetry. The discovery of borospherene was announced in July 2014, and is described ...
(B40) was announced in July 2014.


Amorphous boron

Amorphous boron contains B12 regular icosahedra that are randomly bonded to each other without long range order. Pure amorphous boron can be produced by thermal decomposition of
diborane Diborane(6), generally known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracte ...
at temperatures below 1000 °C. Annealing at 1000 °C converts amorphous boron to β-rhombohedral boron. Amorphous boron nanowires (30–60 nm thick) or fibers can be produced by
magnetron sputtering Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re ...
and
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
-assisted chemical vapor deposition, respectively; and they also convert to β-rhombohedral boron nanowires upon annealing at 1000 °C.


Notes


References


Bibliography

* * * * * * * * * * * * * *


External links

* {{DEFAULTSORT:Allotropes Of Boron Boron