Absolute rotation
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, the concept of absolute rotation—
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
independent of any external
reference A reference is a relationship between objects in which one object designates, or acts as a means by which to connect to or link to, another object. The first object in this relation is said to ''refer to'' the second object. It is called a ''nam ...
—is a topic of debate about relativity,
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
, and the nature of
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) ...
s. For the concept of absolute rotation to be scientifically meaningful, it must be measurable. In other words, can an observer distinguish between the rotation of an observed object and their own rotation? Newton suggested two experiments to resolve this problem. One is the effects of
centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
upon the shape of the surface of water rotating in a
bucket A bucket is typically a watertight, vertical Cylinder (geometry), cylinder or Truncation (geometry), truncated Cone (geometry), cone or square, with an open top and a flat bottom that is attached to a semicircular carrying handle (grip), handle ...
, equivalent to the phenomenon of rotational gravity used in proposals for
human spaceflight Human spaceflight (also referred to as manned spaceflight or crewed spaceflight) is spaceflight with a crew or passengers aboard a spacecraft, often with the spacecraft being operated directly by the onboard human crew. Spacecraft can also be ...
. The second is the effect of centrifugal force upon the tension in a string joining two spheres rotating about their center of mass.


Classical mechanics


Newton's bucket argument

Newton suggested the shape of the surface of the water indicates the presence or absence of absolute rotation relative to absolute space: rotating water has a curved surface, still water has a flat surface. Because rotating water has a concave surface, if the surface you see is concave, and the water does not seem to you to be rotating, then ''you'' are rotating with the water. Centrifugal force is needed to explain the concavity of the water in a co-rotating frame of reference (one that rotates with the water) because the water appears stationary in this frame, and so should have a flat surface. Thus, observers looking at the stationary water need the centrifugal force to explain why the water surface is concave and not flat. The centrifugal force pushes the water toward the sides of the bucket, where it piles up deeper and deeper, Pile-up is arrested when any further climb costs as much work against gravity as is the energy gained from the centrifugal force, which is greater at larger radius. If you need a centrifugal force to explain what you see, then you are rotating. Newton's conclusion was that rotation is absolute. Other thinkers suggest that pure logic implies only relative rotation makes sense. For example,
Bishop Berkeley George Berkeley ( ; 12 March 168514 January 1753), known as Bishop Berkeley (Bishop of Cloyne of the Anglican Church of Ireland), was an Anglo-Irish philosopher, writer, and clergyman who is regarded as the founder of "immaterialism", a philos ...
and
Ernst Mach Ernst Waldfried Josef Wenzel Mach ( ; ; 18 February 1838 – 19 February 1916) was an Austrian physicist and philosopher, who contributed to the understanding of the physics of shock waves. The ratio of the speed of a flow or object to that of ...
(among others) suggested that it is relative rotation with respect to the
fixed stars In astronomy, the fixed stars () are the luminary points, mainly stars, that appear not to move relative to one another against the darkness of the night sky in the background. This is in contrast to those lights visible to the naked eye, name ...
that matters, and rotation of the fixed stars relative to an object has the same effect as rotation of the object with respect to the fixed stars. Newton's arguments do not settle this issue; his arguments may be viewed, however, as establishing centrifugal force as a basis for an
operational definition An operational definition specifies concrete, replicable procedures designed to represent a construct. In the words of American psychologist S.S. Stevens (1935), "An operation is the performance which we execute in order to make known a concept." F ...
of what we actually mean by absolute rotation. Rather than justifying a causal link between rotation and centrifugal effects, Newton's arguments may be viewed as ''defining'' "absolute rotation" by stating a ''procedure'' for its detection and measurement involving centrifugal force. See


Rotating spheres

Newton also proposed another experiment to measure one's rate of rotation: using the tension in a cord joining two spheres rotating about their center of mass. Non-zero tension in the string indicates rotation of the spheres, whether or not the observer thinks they are rotating. This experiment is simpler than the bucket experiment in principle, because it need not involve gravity. Beyond a simple "yes or no" answer to rotation, one may actually calculate one's rotation. To do that, one takes one's measured rate of rotation of the spheres and computes the tension appropriate to this observed rate. This calculated tension then is compared to the measured tension. If the two agree, one is in a stationary (non-rotating) frame. If the two do ''not'' agree, to obtain agreement, one must include a centrifugal force in the tension calculation; for example, if the spheres appear to be stationary, but the tension is non-zero, the entire tension is due to centrifugal force. From the necessary centrifugal force, one can determine one's speed of rotation; for example, if the calculated tension is greater than measured, one is rotating in the sense opposite to the spheres, and the larger the discrepancy the faster this rotation. The tension in the wire is the required centripetal force to sustain the rotation. What is experienced by the physically rotating observer is the centripetal force and the physical effect arising from his own inertia. The effect arising from inertia is referred to as reactive centrifugal force. Whether or not the effects from inertia are attributed to a fictitious centrifugal force is a matter of choice.


Special relativity

French physicist Georges Sagnac in 1913 conducted an experiment that was similar to the
Michelson–Morley experiment The Michelson–Morley experiment was an attempt to measure the motion of the Earth relative to the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between ...
, which was intended to observe the effects of rotation. Sagnac set up this experiment to prove the existence of the
luminiferous aether Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
that Einstein's 1905 theory of special relativity had discarded. The
Sagnac experiment The Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is elicited by rotation. The Sagnac effect manifests itself in a setup called a ring interferometer ...
and later similar experiments showed that a stationary object on the surface of the Earth will rotate once every rotation of the Earth when using stars as a stationary reference point. Rotation was thus concluded to be absolute rather than relative.


General relativity

Mach's principle In theoretical physics, particularly in discussions of gravitation theories, Mach's principle (or Mach's conjecture) is the name given by Albert Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The ...
is the name given by
Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
to a hypothesis often credited to the
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
and
philosopher Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational an ...
Ernst Mach Ernst Waldfried Josef Wenzel Mach ( ; ; 18 February 1838 – 19 February 1916) was an Austrian physicist and philosopher, who contributed to the understanding of the physics of shock waves. The ratio of the speed of a flow or object to that of ...
. The idea is that the local motion of a
rotating reference frame A rotating frame of reference is a special case of a non-inertial reference frame that is rotation, rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article co ...
is determined by the large-scale distribution of matter in the universe. Mach's principle says that there is a physical law that relates the motion of the distant stars to the local inertial frame. If you see all the stars whirling around you, Mach suggests that there is some physical law which would make it so you would feel a
centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
. The principle is often stated in vague ways, like "
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
out there influences
inertia Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newto ...
here". The example considered by Einstein was the rotating elastic sphere. Like a rotating planet bulging at the equator, a rotating sphere deforms into an oblate (squashed)
spheroid A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface (mathematics), surface obtained by Surface of revolution, rotating an ellipse about one of its principal axes; in other words, an ellipsoid with t ...
depending on its rotation. In classical mechanics, an explanation of this deformation requires external causes in a frame of reference in which the spheroid is not rotating, and these external causes may be taken as "absolute rotation" in classical physics and special relativity. In
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, no external causes are invoked. The rotation is relative to the local
geodesics In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connec ...
, and since the local geodesics eventually channel information from the distant stars, there appears to be absolute rotation relative to these stars.


See also

*
Absolute time and space Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame. Early concept A version of the concept of absolute space (in the sense of a prefe ...
*
Mach's principle In theoretical physics, particularly in discussions of gravitation theories, Mach's principle (or Mach's conjecture) is the name given by Albert Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The ...
*
Foucault pendulum The Foucault pendulum or Foucault's pendulum is a simple device named after French physicist Léon Foucault, conceived as an experiment to demonstrate the Earth's rotation. If a long and heavy pendulum suspended from the high roof above a circu ...


References

{{DEFAULTSORT:Absolute Rotation Force Rotation Theory of relativity