Material Conditional
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol \rightarrow is interpreted as material implication, a formula P \rightarrow Q is true unless P is true and Q is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many programming languages. However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language. Notation In l ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Binary Operator
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation ''on a set'' is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. An operation of arity two that involves several sets is sometimes also called a ''binary operation''. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions. Binary operations are the keystone of most algebraic structures that are studied ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called the consequent. In some contexts, the consequent is called the ''apodosis''.See Conditional sentence. Examples: * If P, then Q. Q is the consequent of this hypothetical proposition. * If X is a mammal, then X is an animal. Here, "X is an animal" is the consequent. * If computers can think, then they are alive. "They are alive" is the consequent. The consequent in a hypothetical proposition is not necessarily a consequence of the antecedent. * If monkeys are purple, then fish speak Klingon. "Fish speak Klingon" is the consequent here, but intuitively is not a consequence of (nor does it have anything to do with) the claim made in the antecedent that "monkeys are purple. See also * Antecedent (logic) * Conjecture * Necessity and su ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Conditional Proof
A conditional proof is a proof that takes the form of asserting a conditional, and proving that the antecedent of the conditional necessarily leads to the consequent. Overview The assumed antecedent of a conditional proof is called the conditional proof assumption (CPA). Thus, the goal of a conditional proof is to demonstrate that if the CPA were true, then the desired conclusion necessarily follows. The validity of a conditional proof does not require that the CPA be true, only that ''if it were true'' it would lead to the consequent. Conditional proofs are of great importance in mathematics. Conditional proofs exist linking several otherwise unproven conjectures, so that a proof of one conjecture may immediately imply the validity of several others. It can be much easier to show a proposition's truth to follow from another proposition than to prove it independently. A famous network of conditional proofs is the NPcomplete class of complexity theory. There is a large num ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Modus Ponens
In propositional logic, ''modus ponens'' (; MP), also known as ''modus ponendo ponens'' (Latin for "method of putting by placing") or implication elimination or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "''P implies Q.'' ''P'' is true. Therefore ''Q'' must also be true." ''Modus ponens'' is closely related to another valid form of argument, ''modus tollens''. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence. Constructive dilemma is the disjunctive version of ''modus ponens''. Hypothetical syllogism is closely related to ''modus ponens'' and sometimes thought of as "double ''modus ponens''." The history of ''modus ponens'' goes back to antiquity. The first to explicitly describe the argument form ''modus ponens'' was Theophrastus. It, along with ''modus tollens'', is one of the standard patterns of inference that can be applied to d ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Rules Of Inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called ''modus ponens'' takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other nonclassical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In manyvalued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules suc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Proof Theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic that represents Mathematical proof, proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as Recursive data type, inductivelydefined data structures such as list (computer science), lists, boxed lists, or Tree (data structure), trees, which are constructed according to the axioms and rule of inference, rules of inference of the logical system. Consequently, proof theory is syntax (logic), syntactic in nature, in contrast to model theory, which is Formal semantics (logic), semantic in nature. Some of the major areas of proof theory include structural proof theory, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Vacuous Truth
In mathematics and logic, a vacuous truth is a conditional or universal statement (a universal statement that can be converted to a conditional statement) that is true because the antecedent cannot be satisfied. For example, the statement "she does not own a cell phone" will imply that the statement "all of her cell phones are turned off" will be assigned a truth value. Also, the statement "all of her cell phones are turned ''on''" would also be vacuously true, as would the conjunction of the two: "all of her cell phones are turned on ''and'' turned off", which would otherwise be incoherent and false. For that reason, it is sometimes said that a statement is vacuously true because it is meaningless. More formally, a relatively welldefined usage refers to a conditional statement (or a universal conditional statement) with a false antecedent. One example of such a statement is "if Tokyo is in France, then the Eiffel Tower is in Bolivia". Such statements are considered vacuous t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Truth Table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid. A truth table has one column for each input variable (for example, P and Q), and one final column showing all of the possible results of the logical operation that the table represents (for example, P XOR Q). Each row of the truth table contains one possible configuration of the input variables (for instance, P=true Q=false), and the result of the operation for those values. See the examples below for further clarification. Ludwig Wittgenstein is generally credited with inventing and popularizing the truth table ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Truth Function
In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional. Classical propositional logic is a truthfunctional logic, in that every statement has exactly one truth value which is either true or false, and every logical connective is truth functional (with a correspondent truth table), thus every compound statement is a t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Arend Heyting
__NOTOC__ Arend Heyting (; 9 May 1898 – 9 July 1980) was a Dutch mathematician and logician. Biography Heyting was a student of Luitzen Egbertus Jan Brouwer at the University of Amsterdam, and did much to put intuitionistic logic on a footing where it could become part of mathematical logic. Heyting gave the first formal development of intuitionistic logic in order to codify Brouwer's way of doing mathematics. The inclusion of Brouwer's name in the Brouwer–Heyting–Kolmogorov interpretation is largely honorific, as Brouwer was opposed in principle to the formalisation of certain intuitionistic principles (and went as far as calling Heyting's work a "sterile exercise"). In 1942 he became a member of the Royal Netherlands Academy of Arts and Sciences. Heyting was born in Amsterdam, Netherlands, and died in Lugano, Switzerland ). Swiss law does not designate a ''capital'' as such, but the federal parliament and government are installed in Bern, while other federal ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Gerhard Gentzen
Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died of starvation in a Soviet prison camp in Prague in 1945, having been interned as a German national after the Second World War. Life and career Gentzen was a student of Paul Bernays at the University of Göttingen. Bernays was fired as "nonAryan" in April 1933 and therefore Hermann Weyl formally acted as his supervisor. Gentzen joined the Sturmabteilung in November 1933 although he was by no means compelled to do so. Nevertheless he kept in contact with Bernays until the beginning of the Second World War. In 1935, he corresponded with Abraham Fraenkel in Jerusalem and was implicated by the Nazi teachers' union as one who "keeps contacts to the Chosen People." In 1935 and 1936, Hermann Weyl, head of the Göttingen mathematics department in 1 ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Principia Mathematica
The ''Principia Mathematica'' (often abbreviated ''PM'') is a threevolume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1925–1927, it appeared in a second edition with an important ''Introduction to the Second Edition'', an ''Appendix A'' that replaced ✸9 and allnew ''Appendix B'' and ''Appendix C''. ''PM'' is not to be confused with Russell's 1903 ''The Principles of Mathematics''. ''PM'' was originally conceived as a sequel volume to Russell's 1903 ''Principles'', but as ''PM'' states, this became an unworkable suggestion for practical and philosophical reasons: "The present work was originally intended by us to be comprised in a second volume of ''Principles of Mathematics''... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been l ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 