Limit Ordinal
In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β 0, are limits of limits, etc. Properties The classes of successor ordinals and limit ordinals (of various cofinalities) as well as zero exhaust the entire class of ordinals, so these cases are often used in proofs by transfinite induction or definitions by transfinite recursion. Limit ordinals represent a sort of "turning point" in such procedures, in which one must use limiting operations such as taking the union over all preceding ordinals. In principle, one could do anything at limit ordinals, but taking the union is continuous in the order topology and this is usually desirable. If we use the von Neumann cardinal assignment, every infinite cardinal number is also a limit ordinal (and this is a fitting obs ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Least Upper Bound
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and maxim ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Transfinite Recursion
Transfinite induction is an extension of mathematical induction to wellordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then $P(\backslash alpha)$ is also true. Then transfinite induction tells us that $P$ is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that $P(0)$ is true. * Successor case: Prove that for any $\backslash alpha+1$, $P(\backslash alpha+1)$ follows from $P(\backslash alpha)$ (and, if necessary, $P(\backslash beta)$ for all $\backslash beta\; <\; \backslash alpha$). * Limit case: Prove that for any 

Transfinite Induction
Transfinite induction is an extension of mathematical induction to wellordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then $P(\backslash alpha)$ is also true. Then transfinite induction tells us that $P$ is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that $P(0)$ is true. * Successor case: Prove that for any $\backslash alpha+1$, $P(\backslash alpha+1)$ follows from $P(\backslash alpha)$ (and, if necessary, $P(\backslash beta)$ for all $\backslash beta\; <\; \backslash alpha$). * Limit case: Prove that for any 

Cofinality
In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses the fact that every nonempty set of cardinal numbers has a least member. The cofinality of a partially ordered set ''A'' can alternatively be defined as the least ordinal ''x'' such that there is a function from ''x'' to ''A'' with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent. Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net. Examples * The cofinality of a partially ordered set with greatest element is 1 as the set consisting only of the greatest element is cofinal (and must be contained in every other cofinal subse ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Maximum
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given range (the ''local'' or ''relative'' extrema), or on the entire domain (the ''global'' or ''absolute'' extrema). Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. Definition A realvalued function ''f'' defined on a domain ''X'' has a global (or absolute) maximum point at ''x''∗, if for all ''x'' in ''X''. Similarly, the function has a global (or absolute) minimum point at ''x''∗, if for all ''x'' in ''X''. The value of the function at a m ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

First Uncountable Ordinal
In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. When considered as a set, the elements of \omega_1 are the countable ordinals (including finite ordinals), of which there are uncountably many. Like any ordinal number (in von Neumann's approach), \omega_1 is a wellordered set, with set membership serving as the order relation. \omega_1 is a limit ordinal, i.e. there is no ordinal \alpha such that \omega_1 = \alpha+1. The cardinality of the set \omega_1 is the first uncountable cardinal number, \aleph_1 (alephone). The ordinal \omega_1 is thus the initial ordinal of \aleph_1. Under the continuum hypothesis, the cardinality of \omega_1 is \beth_1, the same as that of \mathbb—the set of real numbers. In most constructions, \omega_1 and \aleph_1 are considered equal as sets. To generalize ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Church–Kleene Ordinal
In mathematics, particularly set theory, nonrecursive ordinals are large countable ordinals greater than all the recursive ordinals, and therefore can not be expressed using ordinal collapsing functions. The Church–Kleene ordinal and variants The smallest nonrecursive ordinal is the Church Kleene ordinal, \omega_1^, named after Alonzo Church and S. C. Kleene; its order type is the set of all recursive ordinals. Since the successor of a recursive ordinal is recursive, the Church–Kleene ordinal is a limit ordinal. It is also the smallest ordinal that is not hyperarithmetical, and the smallest admissible ordinal after (an ordinal ''α'' is called admissible if L_\alpha \models \mathsf.). The \omega_1^recursive subsets of are exactly the \Delta^1_1 subsets of .D. MadoreA Zoo of Ordinals(2017). Accessed September 2021. The notation \omega_1^ is in reference to , the first uncountable ordinal, which is the set of all countable ordinals, analogously to how the ChurchKleene ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Ordinal Notation
In mathematical logic and set theory, an ordinal notation is a partial function mapping the set of all finite sequences of symbols, themselves members of a finite alphabet, to a countable set of ordinals. A Gödel numbering is a function mapping the set of wellformed formulae (a finite sequence of symbols on which the ordinal notation function is defined) of some formal language to the natural numbers. This associates each wellformed formula with a unique natural number, called its Gödel number. If a Gödel numbering is fixed, then the subset relation on the ordinals induces an ordering on wellformed formulae which in turn induces a wellordering on the subset of natural numbers. A recursive ordinal notation must satisfy the following two additional properties: # the subset of natural numbers is a recursive set # the induced wellordering on the subset of natural numbers is a recursive relation There are many such schemes of ordinal notations, including schemes by Wilhelm Acke ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Recursively Enumerable
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turingrecognizable if: *There is an algorithm such that the set of input numbers for which the algorithm halts is exactly ''S''. Or, equivalently, *There is an algorithm that enumerates the members of ''S''. That means that its output is simply a list of all the members of ''S'': ''s''1, ''s''2, ''s''3, ... . If ''S'' is infinite, this algorithm will run forever. The first condition suggests why the term ''semidecidable'' is sometimes used. More precisely, if a number is in the set, one can ''decide'' this by running the algorithm, but if the number is not in the set, the algorithm runs forever, and no information is returned. A set that is "completely decidable" is a computable set. The second condition suggests why ''computably enumerable'' is used. The abbreviations c.e. and r.e. are oft ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite comm ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 