Transversality (mathematics)
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection. Definition Two submanifolds of a given finitedimensional smooth manifold are said to intersect transversally if at every point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient manifold at that point. Manifolds that do not intersect are vacuously transverse. If the manifolds are of complementary dimension (i.e., their dimensions add up to the dimension of the ambient space), the condition means that the tangent space to the ambient manifold is the direct sum of the two smaller tangent spaces. If an intersection is transverse, then the intersection will be a su ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Pushforward (differential)
In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of ''φ, d\varphi_x,'' at a point ''x'' is, in some sense, the best linear approximation of ''φ'' near ''x''. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of ''M'' at ''x'' to the tangent space of ''N'' at ''φ''(''x''), d\varphi_x: T_xM \to T_N. Hence it can be used to ''push'' tangent vectors on ''M'' ''forward'' to tangent vectors on ''N''. The differential of a map ''φ'' is also called, by various authors, the derivative or total derivative of ''φ''. Motivation Let \varphi: U \to V be a smooth map from an open subset U of \R^m to an open subset V of \R^n. For any point x in U, the Jacobian of \varphi at x (with respect to the standard coordinates) is the matrix representation of the total d ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Sl2triple
In the theory of Lie algebras, an ''sl''2triple is a triple of elements of a Lie algebra that satisfy the commutation relations between the standard generators of the special linear Lie algebra ''sl''2. This notion plays an important role in the theory of semisimple Lie algebras, especially in regard to their nilpotent orbits. Definition Elements of a Lie algebra ''g'' form an ''sl''2triple if : ,e= 2e, \quad ,f= 2f, \quad ,f= h. These commutation relations are satisfied by the generators : h = \begin 1 & 0\\ 0 & 1 \end, \quad e = \begin 0 & 1\\ 0 & 0 \end, \quad f = \begin 0 & 0\\ 1 & 0 \end of the Lie algebra ''sl''2 of 2 by 2 matrices with zero trace. It follows that ''sl''2triples in ''g'' are in a bijective correspondence with the Lie algebra homomorphisms from ''sl''2 into ''g''. The alternative notation for the elements of an ''sl''2triple is , with ''H'' corresponding to ''h'', ''X'' corresponding to ''e'', and ''Y'' corresponding to ''f''. H is cal ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Simple Lie Group
In mathematics, a simple Lie group is a connected nonabelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. Together with the commutative Lie group of the real numbers, \mathbb, and that of the unitmagnitude complex numbers, U(1) (the unit circle), simple Lie groups give the atomic "blocks" that make up all (finitedimensional) connected Lie groups via the operation of group extension. Many commonly encountered Lie groups are either simple or 'close' to being simple: for example, the socalled "special linear group" SL(''n'') of ''n'' by ''n'' matrices with determinant equal to 1 is simple for all ''n'' > 1. The first classification of simple Lie groups was by Wilhelm Killing, and this work was later perfected by Élie Cartan. The final classification is often referred to as KillingCartan classification. Definition Unfortun ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its preexisting meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Surface (topology)
In the part of mathematics referred to as topology, a surface is a twodimensional manifold. Some surfaces arise as the boundaries of threedimensional solids; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in threedimensional Euclidean space. Topological surfaces are sometimes equipped with additional information, such as a Riemannian metric or a complex structure, that connects them to other disciplines within mathematics, such as differential geometry and complex analysis. The various mathematical notions of surface can be used to model surfaces in the physical world. In general In mathematics, a surface is a geometrical shape that resembles a deformed plane. The most familiar examples arise as boundaries of solid ob ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Supercommutative
In mathematics, a supercommutative (associative) algebra is a superalgebra (i.e. a Z2graded algebra) such that for any two homogeneous elements ''x'', ''y'' we have :yx = (1)^xy , where , ''x'', denotes the grade of the element and is 0 or 1 (in Z) according to whether the grade is even or odd, respectively. Equivalently, it is a superalgebra where the supercommutator : ,y= xy  (1)^yx always vanishes. Algebraic structures which supercommute in the above sense are sometimes referred to as skewcommutative associative algebras to emphasize the anticommutation, or, to emphasize the grading, gradedcommutative or, if the supercommutativity is understood, simply commutative. Any commutative algebra is a supercommutative algebra if given the trivial gradation (i.e. all elements are even). Grassmann algebras (also known as exterior algebras) are the most common examples of nontrivial supercommutative algebras. The supercenter of any superalgebra is the set of elements that supe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cup Product
In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree ''p'' and ''q'' to form a composite cocycle of degree ''p'' + ''q''. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space ''X'' into a graded ring, ''H''∗(''X''), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944. Definition In singular cohomology, the cup product is a construction giving a product on the graded cohomology ring ''H''∗(''X'') of a topological space ''X''. The construction starts with a product of cochains: if \alpha^p is a ''p''cochain and \beta^q is a ''q''cochain, then :(\alpha^p \smile \beta^q)(\sigma) = \alpha^p(\sigma \circ \iota_) \cdot \beta^q(\sigma \circ \iota_) where σ is a singular (''p'' + ''q'') simplex and ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Poincaré Dual
Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré (1854–1912), French physicist, mathematician and philosopher of science * Henriette Poincaré (18581943), wife of Prime Minister Raymond Poincaré * Lucien Poincaré (1862–1920), physicist, brother of Raymond and cousin of Henri * Raymond Poincaré (1860–1934), French Prime Minister or President ''inter alia'' from 1913 to 1920, cousin of Henri See also *List of things named after Henri Poincaré In physics and mathematics, a number of ideas are named after Henri Poincaré: * Euler–Poincaré characteristic * Hilbert–Poincaré series * Poincaré–Bendixson theorem * Poincaré–Birkhoff theorem * Poincaré–Birkhoff–Witt theorem, usu .... * * {{DEFAULTSORT:Poincare Frenchlanguage surnames ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Ambient Isotopy
In the mathematical subject of topology, an ambient isotopy, also called an ''hisotopy'', is a kind of continuous distortion of an ambient space, for example a manifold, taking a submanifold to another submanifold. For example in knot theory, one considers two knots the same if one can distort one knot into the other without breaking it. Such a distortion is an example of an ambient isotopy. More precisely, let N and M be manifolds and g and h be embeddings of N in M. A continuous map :F:M \times ,1\rightarrow M is defined to be an ambient isotopy taking g to h if F_0 is the identity map, each map F_t is a homeomorphism from M to itself, and F_1 \circ g = h. This implies that the orientation must be preserved by ambient isotopies. For example, two knots that are mirror images of each other are, in general, not equivalent. See also * Isotopy * Regular homotopy *Regular isotopy References *M. A. Armstrong, ''Basic Topology'', SpringerVerlag Springer Science+Business Med ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a twodimensional hole while the circle encloses a onedimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 