Responsivity
   HOME
*





Responsivity
Responsivity measures the input–output gain of a detector system. In the specific case of a photodetector, it measures the electrical output per optical input. A photodetector's responsivity is usually expressed in units of amperes or volts per watt of incident radiant power. For a system that responds linearly to its input, there is a unique responsivity. For nonlinear systems, the responsivity is the local slope. Many common photodetectors respond linearly as a function of the incident power. Responsivity is a function of the wavelength of the incident radiation and of the sensor's properties, such as the bandgap of the material of which the photodetector is made. One simple expression for the responsivity ''R'' of a photodetector in which an optical signal is converted into an electric current (known as a photocurrent) is R=\eta\frac\approx\eta\frac where \eta is the quantum efficiency (the conversion efficiency of photons to electrons) of the detector for a given wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photodetector
Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically photo detector have a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy. Types Photodetectors may be classified by their mechanism for detection: * Photoemission or photoelectric effect: Photons cause electrons to transition from the conduction band of a material to free electrons in a vacuum or gas. * Thermal: Photons cause electrons to transition to mid-gap states then decay back to lower bands, inducing ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Responsiveness
Responsiveness as a concept of computer science refers to the specific ability of a system or functional unit to complete assigned tasks within a given time. For example, it would refer to the ability of an artificial intelligence system to understand and carry out its tasks in a timely fashion. It is one of the criteria under the principle of robustness (from a v principle). The other three are observability, recoverability, and task conformance. Vs performance Software which lacks a decent process management can have poor responsiveness even on a fast machine. On the other hand, even slow hardware can run responsive software. It is much more important that a system actually spend the available resources in the best way possible. For instance, it makes sense to let the mouse driver run at a very high priority to provide fluid mouse interactions. For long-term operations, such as copying, downloading or transforming big files the most important factor is to provide good user- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Efficiency
The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio of a photosensitive device, or it may refer to the TMR effect of a Magnetic Tunnel Junction. This article deals with the term as a measurement of a device's electrical sensitivity to light. In a charge-coupled device (CCD) or other photodetector, it is the ratio between the number of charge carriers collected at either terminal and the number of photons hitting the device's photoreactive surface. As a ratio, QE is dimensionless, but it is closely related to the responsivity, which is expressed in amps per watt. Since the energy of a photon is inversely proportional to its wavelength, QE is often measured over a range of different wavelengths to characterize a device's efficiency at each photon energy level. For typical semiconductor photodetectors, QE drops to zero for photons whose energy is below the band gap. A photographic film typically has a QE of much less than 10%, while ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gain (electronics)
In electronics, gain is a measure of the ability of a two-port circuit (often an amplifier) to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units ("dB gain"). A gain greater than one (greater than zero dB), that is amplification, is the defining property of an active component or circuit, while a passive circuit will have a gain of less than one. The term ''gain'' alone is ambiguous, and can refer to the ratio of output to input voltage (''voltage gain''), current (''current gain'') or electric power (''power gain''). In the field of audio and general purpose amplifiers, especially operational amplifiers, the term usually refers to voltage gain, but in radio frequency amplifiers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Specific Detectivity
Specific detectivity, or ''D*'', for a photodetector is a figure of merit used to characterize performance, equal to the reciprocal of noise-equivalent power (NEP), normalized per square root of the sensor's area and frequency bandwidth (reciprocal of twice the integration time). Specific detectivity is given by D^*=\frac, where A is the area of the photosensitive region of the detector, \Delta f is the bandwidth, and NEP the noise equivalent power in units It is commonly expressed in ''Jones'' units (cm \cdot \sqrt/ W) in honor of Robert Clark Jones who originally defined it.R. C. Jones, "Proposal of the detectivity D** for detectors limited by radiation noise," ''J. Opt. Soc. Am.'' 50, 1058 (1960), ) Given that noise-equivalent power can be expressed as a function of the responsivity \mathfrak (in units of A/W or V/W) and the noise spectral density S_n (in units of A/Hz^ or V/Hz^) as NEP=\frac, it is common to see the specific detectivity expressed as D^*=\frac. It is oft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Interaction Design
Interaction design, often abbreviated as IxD, is "the practice of designing interactive digital products, environments, systems, and services." Beyond the digital aspect, interaction design is also useful when creating physical (non-digital) products, exploring how a user might interact with it. Common topics of interaction design include design, human–computer interaction, and software development. While interaction design has an interest in form (similar to other design fields), its main area of focus rests on behavior. Rather than analyzing how things are, interaction design synthesizes and imagines things as they could be. This element of interaction design is what characterizes IxD as a design field as opposed to a science or engineering field. While disciplines such as software engineering have a heavy focus on designing for technical stakeholders, interaction design is focused on meeting the needs and optimizing the experience of users, within relevant technical or busin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noise-equivalent Power
Noise-equivalent power (NEP) is a measure of the sensitivity of a photodetector or detector system. It is defined as the signal power that gives a signal-to-noise ratio of one in a one hertz output bandwidth. An output bandwidth of one hertz is equivalent to half a second of integration time.The factor of one half is explained by the Nyquist–Shannon sampling theorem. The units of NEP are watts per square root hertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one her .... The NEP is equal to the noise spectral density (expressed in units of \mathrm/\sqrt or \mathrm/\sqrt) divided by the responsivity (expressed in units of \mathrm/\mathrm or \mathrm/\mathrm, respectively). The fundamental equation is SNR = P/NEP. A smaller NEP corresponds to a more sensitive detector. For example, a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sensitivity (electronics)
The sensitivity of an electronic device, such as a communications system receiver, or detection device, such as a PIN diode, is the minimum magnitude of input signal required to produce a specified output signal having a specified signal-to-noise ratio, or other specified criteria. Sensitivity is sometimes improperly used as a synonym for '' responsivity''. Electroacoustics The sensitivity of a microphone is usually expressed as the sound field strength in decibels (dB) relative to 1 V/ Pa (Pa = N/ m2) or as the transfer factor in millivolts per pascal (mV/Pa) into an open circuit or into a 1 kiloohm load. The sensitivity of a loudspeaker is usually expressed as dB / 2.83 VRMS at 1 metre. This is not the same as the electrical efficiency; see Efficiency vs sensitivity. The sensitivity of a hydrophone is usually expressed as dB re 1 V/μPa. Receivers Sensitivity in a receiver, such a radio receiver, indicates its capability to extract information from a weak signal, q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amplifier
An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It may increase the power significantly, or its main effect may be to boost the voltage or current ( power, voltage or current amplifier). It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a greater amplitude signal at its output. The ratio of output to input voltage, current, or power is termed gain (voltage, current, or power gain). An amplifier, by definition has gain greater than unity (if the gain is less than unity, the device is an attenuator). An amplifier can either be a separate piece of equipment or an electrical circuit contained within another device. Amplification is fundamental to modern electronics, and amplifiers are widely used in almost all electronic equipment. Amplifiers can be cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electron Charge
The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundamental physical constant. In the SI system of units, the value of the elementary charge is exactly defined as e =  coulombs, or 160.2176634 zeptocoulombs (zC). Since the 2019 redefinition of SI base units, the seven SI base units are defined by seven fundamental physical constants, of which the elementary charge is one. In the centimetre–gram–second system of units (CGS), the corresponding quantity is . Robert A. Millikan and Harvey Fletcher's oil drop experiment first directly measured the magnitude of the elementary charge in 1909, differing from the modern accepted value by just 0.6%. Under assumptions of the then-disputed atomic theory, the elementary charge had also been indirectly inferred to ~3% accuracy from bl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]