HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff

picture info

Wave
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport. Waves consist, instead, of oscillations or vibrations of a physical medium or a field, around relatively fixed locations. There are two main types of waves: mechanical and electromagnetic. Mechanical waves propagate through a physical matter, whose substance is being deformed. Restoring forces then reverse the deformation. For example, sound waves propagate via air molecules colliding with their neighbors. When the molecules collide, they also bounce away from each other (a restoring force). This keeps the molecules from continuing to travel in the direction of the wave. Electromagnetic waves
Electromagnetic waves
do not require a medium. Instead, they consist of periodic oscillations of electrical and magnetic fields originally generated by charged particles, and can therefore travel through a vacuum
[...More...]

picture info

Phenomenon
A phenomenon (Greek: φαινόμενον, phainómenon, from the verb phainein, to show, shine, appear, to be manifest or manifest itself, plural phenomena)[1] is any thing which manifests itself. Phenomena are often, but not always, understood as "things that appear" or "experiences" for a sentient being, or in principle may be so. The term came into its modern philosophical usage through Immanuel Kant, who contrasted it with the noumenon. In contrast to a phenomenon, a noumenon cannot be directly observed. Kant was heavily influenced by Gottfried Wilhelm Leibniz
Gottfried Wilhelm Leibniz
in this part of his philosophy, in which phenomenon and noumenon serve as interrelated technical terms. Far predating this, the ancient Greek Pyrrhonist philosopher Sextus Empiricus
Sextus Empiricus
also used phenomenon and noumenon as interrelated technical terms. Cloud chamber
Cloud chamber
phenomena
[...More...]

picture info

Vortex
In fluid dynamics, a vortex (plural vortices/vortexes[1][2]) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved.[3][4] Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of boat, or the winds surrounding a tornado or dust devil. Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterize vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis. In the absence of external forces, viscous friction within the fluid tends to organize the flow into a collection of irrotational vortices, possibly superimposed to larger-scale flows, including larger-scale vortices. Once formed, vortices can move, stretch, twist, and interact in complex ways
[...More...]

Gravitational Field
In physics, a gravitational field is a model used to explain the influence that a massive body extends into the space around itself, producing a force on another massive body.[1] Thus, a gravitational field is used to explain gravitational phenomena, and is measured in newtons per kilogram (N/kg). In its original concept, gravity was a force between point masses. Following Isaac Newton, Pierre-Simon Laplace attempted to model gravity as some kind of radiation field or fluid, and since the 19th century explanations for gravity have usually been taught in terms of a field model, rather than a point attraction. In a field model, rather than two particles attracting each other, the particles distort spacetime via their mass, and this distortion is what is perceived and measured as a "force"
[...More...]

picture info

Parallel (geometry)
In geometry, parallel lines are lines in a plane which do not meet; that is, two lines in a plane that do not intersect or touch each other at any point are said to be parallel. By extension, a line and a plane, or two planes, in three-dimensional Euclidean space
Euclidean space
that do not share a point are said to be parallel. However, two lines in three-dimensional space which do not meet must be in a common plane to be considered parallel; otherwise they are called skew lines. Parallel planes are planes in the same three-dimensional space that never meet. Parallel lines are the subject of Euclid's parallel postulate.[1] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry
[...More...]

picture info

Free Space
Vacuum
Vacuum
is space devoid of matter. The word stems from the Latin adjective vacuus for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure.[1] Physicists often discuss ideal test results that would occur in a perfect vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is lower than atmospheric pressure.[2] The Latin term in vacuo is used to describe an object that is surrounded by a vacuum. The quality of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum
[...More...]

picture info

Vacuum
Vacuum
Vacuum
is space devoid of matter. The word stems from the Latin adjective vacuus for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure.[1] Physicists often discuss ideal test results that would occur in a perfect vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is lower than atmospheric pressure.[2] The Latin term in vacuo is used to describe an object that is surrounded by a vacuum. The quality of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum
[...More...]

Restoring Force
Restoring force, in a physics context, is a force that gives rise to an equilibrium in a physical system. If the system is perturbed away from the equilibrium, the restoring force will tend to bring the system back toward equilibrium. The restoring force is a function only of position of the mass or particle. It is always directed back toward the equilibrium position of the system. The restoring force is often referred to in simple harmonic motion. The force which is responsible to restore original size and shape is called restoring force.[1][2] An example is the action of a spring. An idealized spring exerts a force that is proportional to the amount of deformation of the spring from its equilibrium length, exerted in a direction to oppose the deformation. Pulling the spring to a greater length causes it to exert a force that brings the spring back toward its equilibrium length
[...More...]

Elasticity (physics)
In physics, elasticity (from Greek ἐλαστός "ductible") is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate forces are applied on them. If the material is elastic, the object will return to its initial shape and size when these forces are removed. The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state. For rubbers and other polymers, elasticity is caused by the stretching of polymer chains when forces are applied. Perfect elasticity is an approximation of the real world. The most elastic body in modern science found is quartz fibre[citation needed] which is not even a perfect elastic body
[...More...]

picture info

Oscillation
Oscillation
Oscillation
is the repetitive variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. The term vibration is precisely used to describe mechanical oscillation
[...More...]

picture info

Water
Water
Water
is a transparent, tasteless, odorless, and nearly colorless chemical substance that is the main constituent of Earth's streams, lakes, and oceans, and the fluids of most living organisms. Its chemical formula is H2O, meaning that each of its molecules contains one oxygen and two hydrogen atoms that are connected by covalent bonds. Strictly speaking, water refers to the liquid state of a substance that prevails at standard ambient temperature and pressure; but it often refers also to its solid state (ice) or its gaseous state (steam or water vapor). It also occurs in nature as snow, glaciers, ice packs and icebergs, clouds, fog, dew, aquifers, and atmospheric humidity. Water
Water
covers 71% of the Earth's surface.[1] It is vital for all known forms of life
[...More...]

picture info

Inertia
Inertia
Inertia
is the resistance of any physical object to any change in its state of motion. This includes changes to the object's speed, direction, or state of rest. Inertia
Inertia
is also defined as the tendency of objects to keep moving in a straight line at a constant velocity. The principle of inertia is one of the fundamental principles in classical physics that are still used to describe the motion of objects and how they are affected by the applied forces on them. Inertia
Inertia
comes from the Latin word, iners, meaning idle, sluggish. Inertia
Inertia
is one of the primary manifestations of mass, which is a quantitative property of physical systems
[...More...]

picture info

Mass
Mass
Mass
is both a property of a physical body and a measure of its resistance to acceleration (a change in its state of motion) when a net force is applied.[1] It also determines the strength of its mutual gravitational attraction to other bodies. The basic SI unit
SI unit
of mass is the kilogram (kg). In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon
Moon
would weigh less than it does on Earth
Earth
because of the lower gravity, but it would still have the same mass. This is because weight is a force, while mass is the property that (along with gravity) determines the strength of this force. In Newtonian physics, mass can be generalized as the amount of matter in an object
[...More...]

picture info

Physics
Physics
Physics
(from Ancient Greek: φυσική (ἐπιστήμη), romanized: physikḗ (epistḗmē), lit. 'knowledge of nature', from φύσις phýsis 'nature')[1][2][3] is the natural science that studies matter,[4] its motion and behavior through space and time, and that studies the related entities of energy and force.[5] Physics
[...More...]

picture info

Gamma Ray
Gamma
Gamma
rays (also called gamma radiation), denoted by the lower-case Greek letter gamma (γ or γ displaystyle gamma ), are penetrating electromagnetic radiation of a kind arising from the radioactive decay of atomic nuclei. It consists of photons in the highest observed range of photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford
Ernest Rutherford
named this radiation gamma rays
[...More...]

picture info

Gamma Rays
Gamma
Gamma
rays (also called gamma radiation), denoted by the lower-case Greek letter gamma (γ or γ displaystyle gamma ), are penetrating electromagnetic radiation of a kind arising from the radioactive decay of atomic nuclei. It consists of photons in the highest observed range of photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford
Ernest Rutherford
named this radiation gamma rays
[...More...]