HOME
*





Calabi
Eugenio Calabi (born 11 May 1923) is an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics, Emeritus, at the University of Pennsylvania, specializing in differential geometry, partial differential equations and their applications. Academic career Calabi was a Putnam Fellow as an undergraduate at the Massachusetts Institute of Technology in 1946. He received his PhD in mathematics from Princeton University in 1950 after completing a doctoral dissertation, titled "Isometric complex analytic imbedding of Kahler manifolds", under the supervision of Salomon Bochner. He later obtained a professorship at the University of Minnesota. In 1964, Calabi joined the mathematics faculty at the University of Pennsylvania. Following the retirement of the German-born American mathematician Hans Rademacher, he was appointed to the Thomas A. Scott Professorship of Mathematics at the University of Pennsylvania in 1967. He won the Steele Prize from the America ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Calabi–Yau Manifold
In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by , after who first conjectured that such surfaces might exist, and who proved the Calabi conjecture. Calabi–Yau manifolds are complex manifolds that are generalizations of K3 surfaces in any number of complex dimensions (i.e. any even number of real dimensions). They were originally defined as compact Kähler manifolds with a vanishing first Chern class and a Ricci-flat metric, though many other similar but inequivalent definitions are sometimes used. Definitions The motivational definition given by Shing-Tung Yau is of a compact Kähl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calabi Conjecture
In the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by . It was proved by , who received the Fields Medal and Oswald Veblen Prize in part for his proof. His work, principally an analysis of an elliptic partial differential equation known as the complex Monge–Ampère equation, was an influential early result in the field of geometric analysis. More precisely, Calabi's conjecture asserts the resolution of the prescribed Ricci curvature problem within the setting of Kähler metrics on closed complex manifolds. According to Chern–Weil theory, the Ricci form of any such metric is a closed differential 2-form which represents the first Chern class. Calabi conjectured that for any such differential form , there is exactly one Kähler metric in each Kähler class whose Ricci form is . (Some compact complex manifolds admit no Kähler classes, in which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calabi Flow
In the mathematical fields of differential geometry and geometric analysis, the Calabi flow is a geometric flow which deforms a Kähler metric on a complex manifold. Precisely, given a Kähler manifold , the Calabi flow is given by: :\frac=\frac, where is a mapping from an open interval into the collection of all Kähler metrics on , is the scalar curvature of the individual Kähler metrics, and the indices correspond to arbitrary holomorphic coordinates . This is a fourth-order geometric flow, as the right-hand side of the equation involves fourth derivatives of . The Calabi flow was introduced by Eugenio Calabi Eugenio Calabi (born 11 May 1923) is an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics, Emeritus, at the University of Pennsylvania, specializing in differential geometry, partial differential equations and ... in 1982 as a suggestion for the construction of extremal Kähler metrics, which were also introduced in the same paper. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Calabi Triangle
The Calabi triangle is a special triangle found by Eugenio Calabi and defined by its property of having three different placements for the largest square that it contains. It is an obtuse isosceles triangle with an irrational but algebraic ratio between the lengths of its sides and its base. Definition Consider the largest square that can be placed in an arbitrary triangle. It may be that such a square could be positioned in the triangle in more than one way. If the largest such square can be positioned in three different ways, then the triangle is either an equilateral triangle or the Calabi triangle. Thus, the Calabi triangle may be defined as a triangle that is not equilateral and has three placements for its largest square. Shape The Calabi triangle is isosceles. The ratio of the base to either leg is : x = \Bigg(1 + \sqrt + \sqrt \Bigg) = 1.55138752454...\,. This value can also be expressed without complex numbers by using trigonometric functions: : x = \bigg(1 + \sqrt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calabi–Eckmann Manifold
In complex geometry, a part of mathematics, a Calabi–Eckmann manifold (or, often, Calabi–Eckmann space), named after Eugenio Calabi and Beno Eckmann, is a complex, homogeneous, non-Kähler manifold In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnold ..., homeomorphic to a product of two odd-dimensional spheres of dimension ≥ 3. The Calabi–Eckmann manifold is constructed as follows. Consider the space ^n\backslash \ \times ^m\backslash \, where m,n>1, equipped with an action of the group : : t\in , \ (x,y)\in ^n\backslash \ \times ^m\backslash \ \mid t(x,y)= (e^tx, e^y) where \alpha\in \backslash is a fixed complex number. It is easy to check that this action is free and proper, and the corresponding orbit space ''M'' is homeomorphic to S^\times S^. Since ''M'' is a quoti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of view: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Long Line (topology)
In topology, the long line (or Alexandroff line) is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties (e.g., it is neither Lindelöf nor separable). Therefore, it serves as one of the basic counterexamples of topology. Intuitively, the usual real-number line consists of a countable number of line segments [0,1) laid end-to-end, whereas the long line is constructed from an uncountable number of such segments. Definition The closed long ray L is defined as the cartesian product of the First uncountable ordinal, first uncountable ordinal \omega_1 with the Interval (mathematics), half-open interval [0, 1), equipped with the order topology that arises from the lexicographical order on \omega_1 \times [0,1). The open long ray is obtained from the closed long ray by removing the smallest element (0, 0). The long line is obtained by putting together a long ray i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Xiuxiong Chen
Xiuxiong Chen () is a Chinese-American mathematician whose research concerns differential geometry and differential equations. A professor at Stony Brook University since 2010, he was elected a Fellow of the American Mathematical Society in 2015 and awarded the Oswald Veblen Prize in Geometry in 2019. In 2019, he was awarded the Simons Investigator award. Biography Chen was born in Qingtian County, Zhejiang, China. He entered the Department of Mathematics of the University of Science and Technology of China in 1982, and graduated in 1987. He subsequently studied under Peng Jiagui (彭家贵) at the Graduate School of the Chinese Academy of Sciences, where he earned his master's degree. In 1989 , he moved to the United States to study at the University of Pennsylvania. The last doctoral student of Eugenio Calabi, he obtained his Ph.D. in mathematics in 1994, with his dissertation on "Extremal Hermitian Matrices with Curvature Distortion in a Riemann Surface". Chen was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Putnam Fellow
The William Lowell Putnam Mathematical Competition, often abbreviated to Putnam Competition, is an annual mathematics competition for undergraduate college students enrolled at institutions of higher learning in the United States and Canada (regardless of the students' nationalities). It awards a scholarship and cash prizes ranging from $250 to $2,500 for the top students and $5,000 to $25,000 for the top schools, plus one of the top five individual scorers (designated as ''Putnam Fellows'') is awarded a scholarship of up to $12,000 plus tuition at Harvard University (Putnam Fellow Prize Fellowship), the top 100 individual scorers have their names mentioned in the American Mathematical Monthly (alphabetically ordered within rank), and the names and addresses of the top 500 contestants are mailed to all participating institutions. It is widely considered to be the most prestigious university-level mathematics competition in the world, and its difficulty is such that the median score i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moduli Space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here different solutions are identified if they a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steele Prize
The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for distinguished research work and writing in the field of mathematics. Since 1993, there has been a formal division into three categories. The prizes have been given since 1970, from a bequest of Leroy P. Steele, and were set up in honor of George David Birkhoff, William Fogg Osgood and William Caspar Graustein. The way the prizes are awarded was changed in 1976 and 1993, but the initial aim of honoring expository writing as well as research has been retained. The prizes of $5,000 are not given on a strict national basis, but relate to mathematical activity in the USA, and writing in English (originally, or in translation). Steele Prize for Lifetime Achievement *2023 Nicholas M. Katz *2022 Richard P. Stanley *2021 Spencer Bloch *2020 Karen Uhlenbeck *2019 Jeff Cheeger *2018 Jean Bourgain *2017 James G. Arthur *2016 Barry Simon *2015 Victor Kac *2014 Phillip A. Griffiths *2013 Yakov G. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Salomon Bochner
Salomon Bochner (20 August 1899 – 2 May 1982) was an Austrian mathematician, known for work in mathematical analysis, probability theory and differential geometry. Life He was born into a Jewish family in Podgórze (near Kraków), then Austria-Hungary, now Poland. Fearful of a Russian invasion in Galicia at the beginning of World War I in 1914, his family moved to Germany, seeking greater security. Bochner was educated at a Berlin gymnasium (secondary school), and then at the University of Berlin. There, he was a student of Erhard Schmidt, writing a dissertation involving what would later be called the Bergman kernel. Shortly after this, he left the academy to help his family during the escalating inflation. After returning to mathematical research, he lectured at the University of Munich from 1924 to 1933. His academic career in Germany ended after the Nazis came to power in 1933, and he left for a position at Princeton University. He was a visiting scholar at the Institu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]