Calabi Flow
   HOME
*





Calabi Flow
In the mathematical fields of differential geometry and geometric analysis, the Calabi flow is a geometric flow which deforms a Kähler metric on a complex manifold. Precisely, given a Kähler manifold , the Calabi flow is given by: :\frac=\frac, where is a mapping from an open interval into the collection of all Kähler metrics on , is the scalar curvature of the individual Kähler metrics, and the indices correspond to arbitrary holomorphic coordinates . This is a fourth-order geometric flow, as the right-hand side of the equation involves fourth derivatives of . The Calabi flow was introduced by Eugenio Calabi Eugenio Calabi (born 11 May 1923) is an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics, Emeritus, at the University of Pennsylvania, specializing in differential geometry, partial differential equations and ... in 1982 as a suggestion for the construction of extremal Kähler metrics, which were also introduced in the same paper. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Analysis
Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck,Jackson, Allyn. (2019)Founder of geometric anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric Flow
In the mathematical field of differential geometry, a geometric flow, also called a geometric evolution equation, is a type of partial differential equation for a geometric object such as a Riemannian metric or an embedding. It is not a term with a formal meaning, but is typically understood to refer to parabolic partial differential equations. Certain geometric flows arise as the gradient flow associated to a functional on a manifold which has a geometric interpretation, usually associated with some extrinsic or intrinsic curvature. Such flows are fundamentally related to the calculus of variations, and include mean curvature flow and Yamabe flow. Examples Extrinsic Extrinsic geometric flows are flows on embedded submanifolds, or more generally immersed submanifolds. In general they change both the Riemannian metric and the immersion. * Mean curvature flow, as in soap films; critical points are minimal surfaces * Curve-shortening flow, the one-dimensional case of the mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler Metric
Kähler may refer to: ;People * Alexander Kähler (born 1960), German television journalist * Birgit Kähler (born 1970), German high jumper *Erich Kähler (1906–2000), German mathematician *Heinz Kähler (1905–1974), German art historian and archaeologist *Luise Kähler (1869–1955), German trade union leader and politician *Martin Kähler (1835–1912), German theologian *Otto Kähler (1894–1967), German admiral *Wilhelmine Kähler (1864–1941), German politician ;Other * Kähler Keramik, a Danish ceramics manufacturer *Kähler manifold, an important geometric complex manifold See also *Kahler (other) Kahler may refer to: Places *Kahler, Luxembourg, a small town in the commune of Garnich *Kahler Asten, a German mountain range Other uses *Kahler (surname) *Kahler's disease, a cancer otherwise known as ''multiple myeloma'' *Kahler Tremolo System, ... {{disambiguation, surname Occupational surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of view: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalar Curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor. The definition of scalar curvature via partial derivatives is also valid in the more general setting of pseudo-Riemannian manifolds. This is significant in general relativity, where scalar curvature of a Lorentzian metric is one of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eugenio Calabi
Eugenio Calabi (born 11 May 1923) is an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics, Emeritus, at the University of Pennsylvania, specializing in differential geometry, partial differential equations and their applications. Academic career Calabi was a Putnam Fellow as an undergraduate at the Massachusetts Institute of Technology in 1946. He received his PhD in mathematics from Princeton University in 1950 after completing a doctoral dissertation, titled "Isometric complex analytic imbedding of Kahler manifolds", under the supervision of Salomon Bochner. He later obtained a professorship at the University of Minnesota. In 1964, Calabi joined the mathematics faculty at the University of Pennsylvania. Following the retirement of the German-born American mathematician Hans Rademacher, he was appointed to the Thomas A. Scott Professorship of Mathematics at the University of Pennsylvania in 1967. He won the Steele Prize from the America ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Xiuxiong Chen
Xiuxiong Chen () is a Chinese-American mathematician whose research concerns differential geometry and differential equations. A professor at Stony Brook University since 2010, he was elected a Fellow of the American Mathematical Society in 2015 and awarded the Oswald Veblen Prize in Geometry in 2019. In 2019, he was awarded the Simons Investigator award. Biography Chen was born in Qingtian County, Zhejiang, China. He entered the Department of Mathematics of the University of Science and Technology of China in 1982, and graduated in 1987. He subsequently studied under Peng Jiagui (彭家贵) at the Graduate School of the Chinese Academy of Sciences, where he earned his master's degree. In 1989 , he moved to the United States to study at the University of Pennsylvania. The last doctoral student of Eugenio Calabi, he obtained his Ph.D. in mathematics in 1994, with his dissertation on "Extremal Hermitian Matrices with Curvature Distortion in a Riemann Surface". Chen was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Geometric Flow
In the mathematical field of differential geometry, a geometric flow, also called a geometric evolution equation, is a type of partial differential equation for a geometric object such as a Riemannian metric or an embedding. It is not a term with a formal meaning, but is typically understood to refer to parabolic partial differential equations. Certain geometric flows arise as the gradient flow associated to a functional on a manifold which has a geometric interpretation, usually associated with some extrinsic or intrinsic curvature. Such flows are fundamentally related to the calculus of variations, and include mean curvature flow and Yamabe flow. Examples Extrinsic Extrinsic geometric flows are flows on embedded submanifolds, or more generally immersed submanifolds. In general they change both the Riemannian metric and the immersion. * Mean curvature flow, as in soap films; critical points are minimal surfaces * Curve-shortening flow, the one-dimensional case of the mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equations
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity, and stability. Among the many open questions are the e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]