photodisintegration
   HOME

TheInfoList



OR:

Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden experiments, Geiger–Marsden gold foil experiment. After th ...
absorbs a high-energy
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nucleus, atomic nuclei. It consists of the shortest wavelength electromagnetic wav ...
, enters an excited state, and immediately decays by emitting a subatomic particle. The incoming gamma ray effectively knocks one or more
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s, protons, or an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pro ...
out of the nucleus. The reactions are called (γ,n), (γ,p), and (γ,α). Photodisintegration is
endothermic In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).''Principle of Modern Chemistry'', Brooks Cole. p. ...
(energy absorbing) for atomic nuclei lighter than
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
and sometimes
exothermic In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity ...
(energy releasing) for atomic nuclei heavier than
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
. Photodisintegration is responsible for the
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
of at least some heavy, proton-rich elements via the p-process in supernovae. This causes the iron to further fuse into the heavier elements.


Photodisintegration of deuterium

A photon carrying 2.22 MeV or more energy can photodisintegrate an atom of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
: :
James Chadwick Sir James Chadwick, (20 October 1891 – 24 July 1974) was an English physicist who was awarded the 1935 Nobel Prize in Physics for his discovery of the neutron in 1932. In 1941, he wrote the final draft of the MAUD Report, which insp ...
and Maurice Goldhaber used this reaction to measure the proton-neutron mass difference. This experiment proves that a neutron is not a bound state of a proton and an electron, as had been proposed by
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
.


Photodisintegration of beryllium

A
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
carrying 1.67 MeV or more energy can photodisintegrate an atom of beryllium-9 (100% of natural beryllium, its only stable isotope): : Antimony-124 is assembled with beryllium to make laboratory neutron sources and
startup neutron source Startup neutron source is a neutron source used for stable and reliable initiation of nuclear chain reaction in nuclear reactors, when they are loaded with fresh nuclear fuel, whose neutron flux from spontaneous fission is insufficient for a reliab ...
s. Antimony-124 (half-life 60.20 days) emits β− and 1.690MeV gamma rays (also 0.602MeV and 9 fainter emissions from 0.645 to 2.090 MeV), yielding stable tellurium-124. Gamma rays from antimony-124 split beryllium-9 into two alpha particles and a neutron with an average kinetic energy of 24keV, intermediate neutrons. The other products are two
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pro ...
s. : Other isotopes have higher thresholds for photoneutron production, as high as 18.72 MeV, for
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon ( carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-1 ...
.


Hypernovae

In explosions of very large stars (250 or more
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass o ...
es), photodisintegration is a major factor in the supernova event. As the star reaches the end of its life, it reaches temperatures and pressures where photodisintegration's energy-absorbing effects temporarily reduce pressure and temperature within the star's core. This causes the core to start to collapse as energy is taken away by photodisintegration, and the collapsing core leads to the formation of a
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can defo ...
. A portion of mass escapes in the form of relativistic jets, which could have "sprayed" the first metals into the universe.


Photodisintegration in lightning

Terrestrial lightnings produce high-speed electrons that create bursts of gamma-rays as bremsstrahlung. The energy of these rays is sometimes sufficient to start photonuclear reactions resulting in emitted neutrons. One such reaction, (γ,n), is the only natural process other than those induced by
cosmic rays Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our ow ...
in which is produced on Earth. The unstable isotopes remaining from the reaction may subsequently emit positrons by β+ decay.


Photofission

Photofission is a similar but distinct process, in which a nucleus, after absorbing a gamma ray, undergoes
nuclear fission Nuclear fission is a nuclear reaction, reaction in which the atomic nucleus, nucleus of an atom splits into two or more smaller atomic nucleus, nuclei. The fission process often produces gamma ray, gamma photons, and releases a very large ...
(splits into two fragments of nearly equal mass).


See also

* Pair-instability supernova * Silicon-burning process


References

{{Nuclear_processes Nuclear physics Nucleosynthesis Neutron sources