HOME

TheInfoList



OR:

A multimeter is a
measuring instrument A measuring instrument is a device to measure a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Est ...
that can measure multiple electrical properties. A typical multimeter can measure
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
, resistance, and
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
, in which case it is also known as a volt-ohm-milliammeter (VOM), as the unit is equipped with
voltmeter A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit. ...
,
ammeter An ammeter (abbreviation of ''Ampere meter'') is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit ...
, and ohmmeter functionality, or volt-ohmmeter for short. Some feature the measurement of additional properties such as temperature and
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
. Analog multimeters use a microammeter with a moving pointer to display readings. Digital multimeters (DMM, DVOM) have numeric displays and have made analog multimeters virtually obsolete as they are cheaper, more precise, and more physically robust than analog multimeters. Multimeters vary in size, features, and price. They can be portable handheld devices or highly-precise bench instruments. Cheap multimeters can cost under , while laboratory-grade models with certified
calibration In measurement technology and metrology, calibration is the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy. Such a standard could be another measurement device of kno ...
can cost over .


History

The first moving-pointer current-detecting device was the
galvanometer A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. A galvan ...
in 1820. These were used to measure resistance and voltage by using a
Wheatstone bridge A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. The primary benefit of the circuit is its ability to provid ...
, and comparing the unknown quantity to a reference voltage or resistance. While useful in the lab, the devices were very slow and impractical in the field. These galvanometers were bulky and delicate. The D'Arsonval–Weston meter movement uses a moving coil which carries a pointer and rotates on pivots or a taut band ligament. The coil rotates in a permanent magnetic field and is restrained by fine spiral springs which also serve to carry current into the moving coil. It gives proportional measurement rather than just detection, and deflection is independent of the orientation of the meter. Instead of balancing a bridge, values could be directly read off the instrument's scale, which made measurement quick and easy. The basic moving coil meter is suitable only for direct current measurements, usually in the range of 10 μA to 100 mA. It is easily adapted to read heavier currents by using shunts (resistances in parallel with the basic movement) or to read voltage using series resistances known as multipliers. To read alternating currents or voltages, a rectifier is needed. One of the earliest suitable rectifiers was the copper oxide rectifier developed and manufactured by Union Switch & Signal Company, Swissvale, Pennsylvania, later part of Westinghouse Brake and Signal Company, from 1927. The first attested usage of the word "multimeter" listed by the
Oxford English Dictionary The ''Oxford English Dictionary'' (''OED'') is the first and foundational historical dictionary of the English language, published by Oxford University Press (OUP). It traces the historical development of the English language, providing a c ...
is from 1907. The
invention An invention is a unique or novel device, method, composition, idea or process. An invention may be an improvement upon a machine, product, or process for increasing efficiency or lowering cost. It may also be an entirely new concept. If an ...
of the first multimeter is attributed to British Post Office engineer, Donald Macadie, who became dissatisfied with the need to carry many separate instruments required for maintenance of
telecommunication Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that ...
s circuits. Macadie invented an instrument which could measure
amperes The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
(amps), volts and
ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (bor ...
s, so the multifunctional meter was then named
Avometer AVOmeter is a British trademark for a line of multimeters and electrical measuring instruments; the brand is now owned by the Megger Group Limited. The first Avometer was made by the Automatic Coil Winder and Electrical Equipment Co. in 1923, ...
. The meter comprised a moving coil meter, voltage and precision resistors, and switches and sockets to select the range. The Automatic Coil Winder and Electrical Equipment Company (ACWEECO), founded in 1923, was set up to manufacture the Avometer and a coil winding machine also designed and patented by MacAdie. Although a shareholder of ACWEECO, Mr MacAdie continued to work for the Post Office until his retirement in 1933. His son, Hugh S. MacAdie, joined ACWEECO in 1927 and became Technical Director. The first AVO was put on sale in 1923, and many of its features remained almost unaltered through to the last Model 8.


General properties of multimeters

Any meter will load the circuit under test to some extent. For example, a multimeter using a moving coil movement with full-scale deflection current of 50 microamps (μA), the highest sensitivity commonly available, must draw at least 50 μA from the circuit under test for the meter to reach the top end of its scale. This may load a high-impedance circuit so much as to affect the circuit, thereby giving a low reading. The full-scale deflection current may also be expressed in terms of "ohms per volt" (Ω/V). The ohms per volt figure is often called the "sensitivity" of the instrument. Thus a meter with a 50 μA movement will have a "sensitivity" of 20,000 Ω/V. "Per volt" refers to the fact that the impedance the meter presents to the circuit under test will be 20,000 Ω multiplied by the full-scale voltage to which the meter is set. For example, if the meter is set to a range of 300 V full scale, the meter's impedance will be 6 MΩ. 20,000 Ω/V is the best (highest) sensitivity available for typical analog multimeters that lack internal amplifiers. For meters that do have internal amplifiers (VTVMs, FETVMs, etc.), the input impedance is fixed by the amplifier circuit.


Avometer AVOmeter is a British trademark for a line of multimeters and electrical measuring instruments; the brand is now owned by the Megger Group Limited. The first Avometer was made by the Automatic Coil Winder and Electrical Equipment Co. in 1923, ...

The first Avometer had a sensitivity of 60 Ω/V, three direct current ranges (12 mA, 1.2 A, and 12 A), three direct voltage ranges (12, 120, and 600 V or optionally 1,200 V), and a 10,000 Ω resistance range. An improved version of 1927 increased this to 13 ranges and 166.6 Ω/V (6 mA) movement. A "Universal" version having additional alternating current and alternating voltage ranges was offered from 1933 and in 1936 the dual-sensitivity Avometer Model 7 offered 500 and 100 Ω/V. Between the mid 1930s until the 1950s, 1,000 Ω/V became a de facto standard of sensitivity for radio work and this figure was often quoted on service sheets. However, some manufacturers such as Simpson, Triplett and Weston, all in the USA, produced 20,000 Ω/V VOMs before the Second World War and some of these were exported. After 1945–46, 20,000 Ω/V became the expected standard for electronics, but some makers offered even more sensitive instruments. For industrial and other "heavy-current" use low sensitivity multimeters continued to be produced and these were considered more robust than the more sensitive types. High-quality analog (analogue) multimeters continue to be made by several manufacturers, including Chauvin Arnoux (France), Gossen Metrawatt (Germany), and Simpson and Triplett (USA).


Pocket watch meters

Pocket-watch-style meters were in widespread use in the 1920s. The metal case was typically connected to the negative connection, an arrangement that caused numerous electric shocks. The technical specifications of these devices were often crude, for example the one illustrated has a resistance of just 25 Ω/V, a
non-linear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
scale and no zero adjustment on both ranges.


Vacuum tube voltmeters

Vacuum tube voltmeters or valve voltmeters (VTVM, VVM) were used for voltage measurements in electronic circuits where high
input impedance The input impedance of an electrical network is the measure of the opposition to current ( impedance), both static ( resistance) and dynamic ( reactance), into the load network that is ''external'' to the electrical source. The input admittance (the ...
was necessary. The VTVM had a fixed input impedance of typically 1 MΩ or more, usually through use of a cathode follower input circuit, and thus did not significantly load the circuit being tested. VTVMs were used before the introduction of electronic high-impedance analog
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
and
field effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs contro ...
voltmeters (FETVOMs). Modern digital meters (DVMs) and some modern analog meters also use electronic input circuitry to achieve high input impedance—their voltage ranges are functionally equivalent to VTVMs. The input impedance of some poorly designed DVMs (especially some early designs) would vary over the course of a
sample-and-hold In electronics, a sample and hold (also known as sample and follow) circuit is an analog device that samples (captures, takes) the voltage of a continuously varying analog signal and holds (locks, freezes) its value at a constant level for a ...
internal measurement cycle, causing disturbances to some sensitive circuits under test.


Additional scales

Additional scales such as
decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a ...
s, and measurement functions such as
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
, transistor gain,
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
,
duty cycle A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a form ...
, display hold, and continuity which sounds a
buzzer A buzzer or beeper is an audio signaling device, which may be mechanical, electromechanical, or piezoelectric (''piezo'' for short). Typical uses of buzzers and beepers include alarm devices, timers, train and confirmation of user input such ...
when the measured resistance is small have been included on many multimeters. While multimeters may be supplemented by more specialized equipment in a technician's toolkit, some multimeters include additional functions for specialized applications (temperature with a
thermocouple A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of th ...
probe,
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
, connectivity to a
computer A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations ( computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These prog ...
, speaking measured value, etc.).


Operation

A multimeter is the combination of a DC voltmeter, AC voltmeter,
ammeter An ammeter (abbreviation of ''Ampere meter'') is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit ...
, and ohmmeter. An un-amplified analog multimeter combines a meter movement, range resistors and switches; VTVMs are amplified analog meters and contain active circuitry. For an analog meter movement, DC voltage is measured with a series resistor connected between the meter movement and the circuit under test. A switch (usually rotary) allows greater resistance to be inserted in series with the meter movement to read higher voltages. The product of the basic full-scale deflection current of the movement, and the sum of the series resistance and the movement's own resistance, gives the full-scale voltage of the range. As an example, a meter movement that required 1 mA for full-scale deflection, with an internal resistance of 500 Ω, would, on a 10 V range of the multimeter, have 9,500 Ω of series resistance. For analog current ranges, matched low-resistance shunts are connected in parallel with the meter movement to divert most of the current around the coil. Again for the case of a hypothetical 1 mA, 500 Ω movement on a 1 A range, the shunt resistance would be just over 0.5 Ω. Moving coil instruments can respond only to the average value of the current through them. To measure alternating current, which changes up and down repeatedly, a
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inve ...
is inserted in the circuit so that each negative half cycle is inverted; the result is a varying and nonzero DC voltage whose maximum value will be half the AC peak to peak voltage, assuming a symmetrical waveform. Since the rectified average value and the
root mean square In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the ...
(RMS) value of a waveform are only the same for a square wave, simple rectifier-type circuits can only be calibrated for sinusoidal waveforms. Other wave shapes require a different calibration factor to relate RMS and average value. This type of circuit usually has fairly limited frequency range. Since practical rectifiers have non-zero voltage drop, accuracy and sensitivity is poor at low AC voltage values. To measure resistance, switches arrange for a small battery within the instrument to pass a current through the device under test and the meter coil. Since the current available depends on the state of charge of the battery which changes over time, a multimeter usually has an adjustment for the ohm scale to zero it. In the usual circuits found in analog multimeters, the meter deflection is inversely proportional to the resistance, so full-scale will be 0 Ω, and higher resistance will correspond to smaller deflections. The ohms scale is compressed, so resolution is better at lower resistance values. Amplified instruments simplify the design of the series and shunt resistor networks. The internal resistance of the coil is decoupled from the selection of the series and shunt range resistors; the series network thus becomes a
voltage divider In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (''V''out) that is a fraction of its input voltage (''V''in). Voltage division is the result of distributing the inp ...
. Where AC measurements are required, the rectifier can be placed after the amplifier stage, improving precision at low range. Digital instruments, which necessarily incorporate amplifiers, use the same principles as analog instruments for resistance readings. For resistance measurements, usually a small constant current is passed through the device under test and the digital multimeter reads the resultant voltage drop; this eliminates the scale compression found in analog meters, but requires a source of precise current. An autoranging digital multimeter can automatically adjust the scaling network so the measurement circuits use the full precision of the A/D converter. In all types of multimeters, the quality of the switching elements is critical to stable and accurate measurements. The best DMMs use gold plated contacts in their switches; less expensive meters use nickel plating or none at all, relying on printed circuit board solder traces for the contacts. Accuracy and stability (e.g., temperature variation, or aging, or voltage/current history) of a meter's internal resistors (and other components) is a limiting factor in long-term accuracy and precision of the instrument.


Measured values

Contemporary multimeters can measure many values. The most common are: *
Voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
, alternating and
direct Direct may refer to: Mathematics * Directed set, in order theory * Direct limit of (pre), sheaves * Direct sum of modules, a construction in abstract algebra which combines several vector spaces Computing * Direct access (disambiguation), ...
, in
volt The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827). Defin ...
s. *
Current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
, alternating and direct, in
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
s. :The
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
range for which AC measurements are accurate is important, depends on the circuitry design and construction, and should be specified, so users can evaluate the readings they take. Some meters measure currents as low as milliamps or even microamps. All meters have a burden voltage (caused by the combination of the shunt used and the meter's circuit design), and some (even expensive ones) have sufficiently high burden voltages that low current readings are seriously impaired. Meter specifications should include the burden voltage of the meter. * Resistance in
ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (bor ...
s. Additionally, some multimeters also measure: *
Capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
in
farad The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI). It is named after the English physicist Michael Faraday (1791–1867). In SI base unit ...
s, but usually the limitations of the range are between a few hundred or thousand micro farads and a few pico farads. Very few general purpose multimeters can measure other important aspects of capacitor status such as ESR,
dissipation factor In physics, the dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation (mechanical, electrical, or electromechanical) in a dissipative system. It is the reciprocal of quality factor, which represents the "quality" or ...
, or leakage. * Conductance in
siemens Siemens AG ( ) is a German multinational conglomerate corporation and the largest industrial manufacturing company in Europe headquartered in Munich with branch offices abroad. The principal divisions of the corporation are ''Industry'', ''E ...
, which is the inverse of the resistance measured. *
Decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a ...
s in circuitry, rarely in sound. *
Duty cycle A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a form ...
as a
percentage In mathematics, a percentage (from la, per centum, "by a hundred") is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign, "%", although the abbreviations "pct.", "pct" and sometimes "pc" are also use ...
. *
Frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
in
hertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that o ...
. *
Inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
in henries. Like capacitance measurement, this is usually better handled by a purpose designed inductance / capacitance meter. *
Temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
in degrees
Celsius The degree Celsius is the unit of temperature on the Celsius scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the Kelvin scale. The d ...
or
Fahrenheit The Fahrenheit scale () is a temperature scale based on one proposed in 1724 by the physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit (symbol: °F) as the unit. Several accounts of how he originally defined hi ...
, with an appropriate temperature
test probe A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include ...
, often a
thermocouple A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of th ...
. Digital multimeters may also include circuits for: *
Continuity tester A continuity tester is an item of electrical test equipment used to determine if an electrical path can be established between two points; that is if an electrical circuit can be made. The circuit under test is completely de-energized prior to c ...
; a buzzer sounds when a circuit's resistance is low enough (just how low is enough varies from meter to meter), so the test must be treated as inexact. *
Diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
s (measuring forward drop of diode junctions). *
Transistors upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
(measuring current gain and other
parameters A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
in some kinds of transistors) * Battery checking for simple 1.5 V and 9 V batteries. This is a current-loaded measurement, which simulates in-use battery loads; normal voltage ranges draw very little current from the battery. Various
sensors A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
can be attached to (or included in) multimeters to take measurements such as: *
light level Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahe ...
*
sound pressure level Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydropho ...
* acidity/alkalinity(pH) *
relative humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. Humidity dep ...
* very small current flow (down to nanoamps with some adapters) * very small resistances (down to micro ohms for some adapters) * large currents – adapters are available which use inductance (AC current only) or
Hall effect The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was dis ...
sensors (both AC and DC current), usually through insulated clamp jaws to avoid direct contact with high current capacity circuits which can be dangerous, to the meter and to the operator * very high voltages – adapters are available which form a
voltage divider In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (''V''out) that is a fraction of its input voltage (''V''in). Voltage division is the result of distributing the inp ...
with the meter's internal resistance, allowing measurement into the thousands of volts. However, very high voltages often have surprising behavior, aside from effects on the operator (perhaps fatal); high voltages which actually reach a meter's internal circuitry may internal damage parts, perhaps destroying the meter or permanently ruining its performance.


Resolution


Resolution and accuracy

The resolution of a multimeter is the smallest part of the scale which can be shown, which is scale dependent. On some digital multimeters it can be configured, with higher resolution measurements taking longer to complete. For example, a multimeter that has a 1 mV resolution on a 10 V scale can show changes in measurements in 1 mV increments. Absolute accuracy is the error of the measurement compared to a perfect measurement. Relative accuracy is the error of the measurement compared to the device used to calibrate the multimeter. Most multimeter datasheets provide relative accuracy. To compute the absolute accuracy from the relative accuracy of a multimeter add the absolute accuracy of the device used to calibrate the multimeter to the relative accuracy of the multimeter.


Digital

The resolution of a multimeter is often specified in the number of decimal digits resolved and displayed. If the most significant digit cannot take all values from 0 to 9 it is generally, and confusingly, termed a fractional digit. For example, a multimeter which can read up to 19999 (plus an embedded decimal point) is said to read digits. By convention, if the most significant digit can be either 0 or 1, it is termed a half-digit; if it can take higher values without reaching 9 (often 3 or 5), it may be called three-quarters of a digit. A -digit multimeter would display one "half digit" that could only display 0 or 1, followed by five digits taking all values from 0 to 9. Such a meter could show positive or negative values from 0 to 199999. A -digit meter can display a quantity from 0 to 3999 or 5999, depending on the manufacturer. While a digital display can easily be extended in resolution, the extra digits are of no value if not accompanied by care in the design and calibration of the analog portions of the multimeter. Meaningful (i.e., high-accuracy) measurements require a good understanding of the instrument specifications, good control of the measurement conditions, and traceability of the calibration of the instrument. However, even if its resolution exceeds the
accuracy Accuracy and precision are two measures of '' observational error''. ''Accuracy'' is how close a given set of measurements ( observations or readings) are to their '' true value'', while ''precision'' is how close the measurements are to each o ...
, a meter can be useful for comparing measurements. For example, a meter reading stable digits may indicate that one nominally 100 kΩ resistor is about 7 Ω greater than another, although the error of each measurement is 0.2% of reading plus 0.05% of full-scale value. Specifying "display counts" is another way to specify the resolution. Display counts give the largest number, or the largest number plus one (to include the display of all zeros) the multimeter's display can show, ignoring the
decimal separator A decimal separator is a symbol used to separate the integer part from the fractional part of a number written in decimal form (e.g., "." in 12.45). Different countries officially designate different symbols for use as the separator. The choi ...
. For example, a -digit multimeter can also be specified as a 199999 display count or 200000 display count multimeter. Often the display count is just called the 'count' in multimeter specifications. The accuracy of a digital multimeter may be stated in a two-term form, such as "±1% of reading +2 counts", reflecting the different sources of error in the instrument.


Analog

Analog meters are older designs, but despite being technically surpassed by digital meters with bar graphs, may still be preferred by engineers and troubleshooters. One reason given is that analog meters are more sensitive (or responsive) to changes in the circuit that is being measured. A digital multimeter samples the quantity being measured over time, and then displays it. Analog multimeters continuously read the test value. If there are slight changes in readings, the needle of an analog multimeter will attempt to track it, as opposed to the digital meter having to wait until the next sample, giving delays between each discontinuous reading (plus the digital meter may additionally require settling time to converge on the value). The digital display value as opposed to an analog display is subjectively more difficult to read. This continuous tracking feature becomes important when testing capacitors or coils, for example. A properly functioning capacitor should allow current to flow when voltage is applied, then the current slowly decreases to zero and this "signature" is easy to see on an analog multimeter but not on a digital multimeter. This is similar when testing a coil, except the current starts low and increases. Resistance measurements on an analog meter, in particular, can be of low precision due to the typical resistance measurement circuit which compresses the scale heavily at the higher resistance values. Inexpensive analog meters may have only a single resistance scale, seriously restricting the range of precise measurements. Typically, an analog meter will have a panel adjustment to set the zero-ohms calibration of the meter, to compensate for the varying voltage of the meter battery, and the resistance of the meter's test leads.


Accuracy

Digital multimeters generally take measurements with
accuracy Accuracy and precision are two measures of '' observational error''. ''Accuracy'' is how close a given set of measurements ( observations or readings) are to their '' true value'', while ''precision'' is how close the measurements are to each o ...
superior to their analog counterparts. Standard analog multimeters measure with typically ±3% accuracy, though instruments of higher accuracy are made. Standard portable digital multimeters are specified to have an accuracy of typically ±0.5% on the DC voltage ranges. Mainstream bench-top multimeters are available with specified accuracy of better than ±0.01%. Laboratory grade instruments can have accuracies of a few
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, th ...
. Accuracy figures need to be interpreted with care. The accuracy of an analog instrument usually refers to full-scale deflection; a measurement of 30 V on the 100 V scale of a 3% meter is subject to an error of 3 V, 10% of the reading. Digital meters usually specify accuracy as a percentage of reading plus a percentage of full-scale value, sometimes expressed in counts rather than percentage terms. Quoted accuracy is specified as being that of the lower millivolt (mV) DC range, and is known as the "basic DC volts accuracy" figure. Higher DC voltage ranges, current, resistance, AC and other ranges will usually have a lower accuracy than the basic DC volts figure. AC measurements only meet specified accuracy within a specified range of
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is e ...
. Manufacturers can provide
calibration In measurement technology and metrology, calibration is the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy. Such a standard could be another measurement device of kno ...
services so that new meters may be purchased with a certificate of calibration indicating the meter has been adjusted to standards traceable to, for example, the US
National Institute of Standards and Technology The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical s ...
(NIST), or other national
standards organization A standards organization, standards body, standards developing organization (SDO), or standards setting organization (SSO) is an organization whose primary function is developing, coordinating, promulgating, revising, amending, reissuing, interpr ...
. Test equipment tends to drift out of calibration over time, and the specified accuracy cannot be relied upon indefinitely. For more expensive equipment, manufacturers and third parties provide calibration services so that older equipment may be recalibrated and recertified. The cost of such services is disproportionate for inexpensive equipment; however extreme accuracy is not required for most routine testing. Multimeters used for critical measurements may be part of a
metrology Metrology is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in Fran ...
program to assure calibration. A multimeter can be assumed to be "average responding" to AC waveforms unless stated as being a "true RMS" type. An average responding multimeter will only meet its specified accuracy on AC volts and amps for purely sinusoidal waveforms. A True RMS responding multimeter on the other hand will meet its specified accuracy on AC volts and current with any waveform type up to a specified
crest factor Crest or CREST may refer to: Buildings *The Crest (Huntington, New York), a historic house in Suffolk County, New York *"The Crest", an alternate name for 63 Wall Street, in Manhattan, New York * Crest Castle (Château Du Crest), Jussy, Switzer ...
; RMS performance is sometimes claimed for meters which report accurate RMS readings only at certain frequencies (usually low) and with certain waveforms (essentially always sine waves). A meter's AC voltage and current accuracy may have different specifications at different frequencies.


Sensitivity and input impedance

When used for measuring voltage, the input impedance of the multimeter must be very high compared to the impedance of the circuit being measured; otherwise circuit operation may be affected and the reading will be inaccurate. Meters with electronic amplifiers (all digital multimeters and some analog meters) have a fixed input impedance that is high enough not to disturb most circuits. This is often either one or ten
megohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (b ...
s; the
standardization Standardization or standardisation is the process of implementing and developing technical standards based on the consensus of different parties that include firms, users, interest groups, standards organizations and governments. Standardizatio ...
of the input resistance allows the use of external high-resistance probes which form a
voltage divider In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (''V''out) that is a fraction of its input voltage (''V''in). Voltage division is the result of distributing the inp ...
with the input resistance to extend voltage range up to tens of thousands of volts. High-end multimeters generally provide an input impedance greater than 10 GΩ for ranges less than or equal to 10 V. Some high-end multimeters provide >10 Gigaohms of impedance to ranges greater than 10 V. Most analog multimeters of the moving-pointer type are unbuffered, and draw current from the circuit under test to deflect the meter pointer. The impedance of the meter varies depending on the basic sensitivity of the meter movement and the range which is selected. For example, a meter with a typical 20,000 Ω/V sensitivity will have an input resistance of 2 MΩ on the 100 V range (100 V × 20,000 Ω/V = 2,000,000 Ω). On every range, at full-scale voltage of the range, the full current required to deflect the meter movement is taken from the circuit under test. Lower sensitivity meter movements are acceptable for testing in circuits where source impedances are low compared to the meter impedance, for example, power circuits; these meters are more rugged mechanically. Some measurements in signal circuits require higher sensitivity movements so as not to load the circuit under test with the meter impedance. Sensitivity should not be confused with resolution of a meter, which is defined as the lowest signal change (voltage, current, resistance and so on) that can change the observed reading. For general-purpose digital multimeters, the lowest voltage range is typically several hundred millivolts AC or DC, but the lowest current range may be several hundred microamperes, although instruments with greater current sensitivity are available. Multimeters designed for (mains) "electrical" use instead of general
electronics engineering Electronics engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current f ...
use will typically forego the microamps current ranges. Measurement of low resistance requires lead resistance (measured by touching the test probes together) to be subtracted for best accuracy. This can be done with the "delta", "zero", or "null" feature of many digital multimeters. Contact pressure to the device under test and cleanliness of the surfaces can affect measurements of very low resistances. Some meters offer a four wire test where two probes supply the source voltage and the others take measurement. Using a very high impedance allows for very low voltage drop in the probes and resistance of the source probes is ignored resulting in very accurate results. The upper end of multimeter measurement ranges varies considerably; measurements over perhaps 600 volts, 10 amperes, or 100  megohms may require a specialized test instrument.


Burden voltage

Every inline series-connected ammeter, including a multimeter in a current range, has a certain resistance. Most multimeters inherently measure voltage, and pass a current to be measured through a shunt resistance, measuring the voltage developed across it. The voltage drop is known as the burden voltage, specified in volts per ampere. The value can change depending on the range the meter sets, since different ranges usually use different shunt resistors. The burden voltage can be significant in very low-voltage circuit areas. To check for its effect on accuracy and on external circuit operation the meter can be switched to different ranges; the current reading should be the same and circuit operation should not be affected if burden voltage is not a problem. If this voltage is significant it can be reduced (also reducing the inherent accuracy and precision of the measurement) by using a higher current range.


Alternating current sensing

Since the basic indicator system in either an analog or digital meter responds to DC only, a multimeter includes an AC to DC conversion circuit for making alternating current measurements. Basic meters utilize a rectifier circuit to measure the average or peak absolute value of the voltage, but are calibrated to show the calculated
root mean square In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the ...
(RMS) value for a
sinusoidal A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often i ...
waveform In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time.David Crecraft, David Gorham, ''Electro ...
; this will give correct readings for alternating current as used in power distribution. User guides for some such meters give
correction factor Correction may refer to: * A euphemism for punishment * Correction (newspaper), the posting of a notice of a mistake in a past issue of a newspaper * Correction (stock market), in financial markets, a short-term price decline * ''Correction'' (n ...
s for some simple non-
sinusoidal A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often i ...
waveform In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time.David Crecraft, David Gorham, ''Electro ...
s, to allow the correct
root mean square In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the ...
(RMS) equivalent value to be calculated. More expensive multimeters include an AC to DC converter that measures the true RMS value of the waveform within certain limits; the user manual for the meter may indicate the limits of the
crest factor Crest or CREST may refer to: Buildings *The Crest (Huntington, New York), a historic house in Suffolk County, New York *"The Crest", an alternate name for 63 Wall Street, in Manhattan, New York * Crest Castle (Château Du Crest), Jussy, Switzer ...
and frequency for which the meter calibration is valid. RMS sensing is necessary for measurements on non-sinusoidal periodic waveforms, such as found in audio signals and
variable-frequency drive A variable-frequency drive (VFD) is a type of motor drive used in electro-mechanical drive systems to control AC motor speed and torque by varying motor input frequency and, depending on topology, to control associated voltage or current va ...
s.


Digital multimeters (DMM or DVOM)

Modern multimeters are often digital due to their accuracy, durability and extra features. In a digital multimeter the signal under test is converted to a voltage and an amplifier with electronically controlled gain preconditions the signal. A digital multimeter displays the quantity measured as a number, which eliminates
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby object ...
errors. Modern digital multimeters may have an
embedded computer An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is ''embedded'' ...
, which provides a wealth of convenience features. Measurement enhancements available include: * Auto-ranging, which selects the correct range for the quantity under test so that the most
significant digits Significant figures (also known as the significant digits, ''precision'' or ''resolution'') of a number in positional notation are digits in the number that are reliable and necessary to indicate the quantity of something. If a number expres ...
are shown. For example, a four-digit multimeter would automatically select an appropriate range to display 12.34 mV instead of 0.012 V, or overloading. Auto-ranging meters usually include a facility to hold the meter to a particular range, because a measurement that causes frequent range changes can be distracting to the user. * Auto-polarity for direct-current readings, shows if the
electric polarity An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving par ...
of applied voltage is positive (agrees with meter lead labels) or negative (opposite polarity to meter leads). *
Sample and hold In electronics, a sample and hold (also known as sample and follow) circuit is an analog device that samples (captures, takes) the voltage of a continuously varying analog signal and holds (locks, freezes) its value at a constant level for a ...
, which will latch the most recent reading for examination after the instrument is removed from the circuit under test. * Current-limited tests for
voltage drop Voltage drop is the decrease of electrical potential along the path of a current flowing in an electrical circuit. Voltage drops in the internal resistance of the source, across conductors, across contacts, and across connectors are undesirab ...
across semi conductor junctions. While not a replacement for a proper transistor tester, and most certainly not for a swept curve tracer type, this facilitates testing diodes and a variety of transistor types. * A graphic representation of the quantity under test, as a
bar graph A bar chart or bar graph is a chart or graph that presents categorical data with rectangular bars with heights or lengths proportional to the values that they represent. The bars can be plotted vertically or horizontally. A vertical bar chart i ...
. This makes go/no-go testing easy, and also allows spotting of fast-moving trends. * A low-bandwidth
oscilloscope An oscilloscope (informally a scope) is a type of electronic test instrument that graphically displays varying electrical voltages as a two-dimensional plot of one or more signals as a function of time. The main purposes are to display repetiti ...
. * Automotive circuit testers, including tests for automotive timing and dwell signals (dwell and engine rpm testing is usually available as an option and is not included in the basic automotive DMMs). * Simple
data acquisition Data acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acro ...
features to record maximum and minimum readings over a given period, or to take a number of samples at fixed intervals. * Integration with tweezers for
surface-mount technology Surface-mount technology (SMT), originally called planar mounting, is a method in which the electrical components are mounted directly onto the surface of a printed circuit board (PCB). An electrical component mounted in this manner is referred ...
. * A combined
LCR meter An LCR meter is a type of electronic test equipment used to measure the inductance (L), capacitance (C), and resistance (R) of an electronic component. In the simpler versions of this instrument the impedance was measured internally and conve ...
for small-size SMD and through-hole components. Modern meters may be interfaced with a
personal computer A personal computer (PC) is a multi-purpose microcomputer whose size, capabilities, and price make it feasible for individual use. Personal computers are intended to be operated directly by an end user, rather than by a computer expert or te ...
by
IrDA The Infrared Data Association (IrDA) is an industry-driven interest group that was founded in 1994 by around 50 companies. IrDA provides specifications for a complete set of protocols for wireless infrared communications, and the name "IrDA" also ...
links,
RS-232 In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a ''DTE'' ('' data terminal equipment'') suc ...
connections, USB, or an instrument bus such as
IEEE-488 IEEE 488 is a short-range digital communications 8-bit parallel multi-master interface bus specification developed by Hewlett-Packard as HP-IB (Hewlett-Packard Interface Bus). It subsequently became the subject of several standards, and is ...
. The interface allows the computer to record measurements as they are made. Some DMMs can store measurements and upload them to a computer. The first digital multimeter was manufactured in 1955 by Non Linear Systems. It is claimed that the first ''handheld'' digital multimeter was developed by Frank Bishop of Intron Electronics in 1977, which at the time presented a major breakthrough for servicing and fault finding in the field.


Analog multimeters

A multimeter may be implemented with a
galvanometer A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. A galvan ...
meter movement, or less often with a bargraph or simulated pointer such as a
liquid-crystal display A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but ...
(LCD) or
vacuum fluorescent display A vacuum fluorescent display (VFD) is a display device once commonly used on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens. A VFD operates on the principle of cathodoluminescence, roughly ...
. Analog multimeters were common; a quality analog instrument would cost about the same as a DMM. Analog multimeters had the precision and reading accuracy limitations described above, and so were not built to provide the same accuracy as digital instruments. Analog meters were intuitive where the trend of a measurement was more important than an exact value obtained at a particular moment. A change in angle or in a proportion was easier to interpret than a change in the value of a digital readout. For this reason, some digital multimeters additionally have a bar graph as a second display, typically with a more rapid sampling rate than used for the primary readout. These fast sampling rate bar graphs have a superior response than the physical pointer of analog meters, obsoleting the older technology. With rapidly fluctuating DC, AC or a combination of both, advanced digital meters were able to track and display fluctuations better than analog meters whilst also having the ability to separate and simultaneously display DC and AC components. Analog meter movements are inherently more fragile physically and electrically than digital meters. Many analog multimeters feature a range switch position marked "off" to protect the meter movement during transportation which places a low resistance across the meter movement, resulting in
dynamic braking Dynamic braking is the use of an electric traction motor as a generator when slowing a vehicle such as an electric or diesel-electric locomotive. It is termed " rheostatic" if the generated electrical power is dissipated as heat in brake grid ...
. Meter movements as separate components may be protected in the same manner by connecting a shorting or jumper wire between the terminals when not in use. Meters which feature a shunt across the winding such as an ammeter may not require further resistance to arrest uncontrolled movements of the meter needle because of the low resistance of the shunt. The meter movement in a moving pointer analog multimeter is practically always a moving-coil
galvanometer A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. A galvan ...
of the d'Arsonval type, using either jeweled pivots or taut bands to support the moving coil. In a basic analog multimeter the current to deflect the coil and pointer is drawn from the circuit being measured; it is usually an advantage to minimize the current drawn from the circuit, which implies delicate mechanisms. The sensitivity of an analog multimeter is given in units of ohms per volt. For example, a very low-cost multimeter with a sensitivity of 1,000 Ω/V would draw 1 mA from a circuit at full-scale deflection. More expensive, (and mechanically more delicate) multimeters typically have sensitivities of 20,000 ohms per volt and sometimes higher, with 50,000 ohms per volt (drawing 20 microamperes at full scale) being about the upper limit for a portable, general purpose, non-amplified analog multimeter. To avoid the loading of the measured circuit by the current drawn by the meter movement, some analog multimeters use an amplifier inserted between the measured circuit and the meter movement. While this increases the expense and complexity of the meter, by use of
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
s or
field effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs contro ...
s the input resistance can be made very high and independent of the current required to operate the meter movement coil. Such amplified multimeters are called VTVMs (vacuum tube voltmeters), TVMs (transistor volt meters), FET-VOMs, and similar names. Because of the absence of amplification, ordinary analog multimeter are typically less susceptible to
radio frequency interference Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrost ...
, and so continue to have a prominent place in some fields even in a world of more accurate and flexible electronic multimeters.


Probes

A multimeter can use many different test probes to connect to the circuit or device under test.
Crocodile clip Alligator clip A crocodile clip or alligator clip is a plier-like spring-tensioned metal clip with elongated, serrated jaws that is used for creating a temporary electrical connection. This simple mechanical device gets its name from the re ...
s, retractable hook clips, and pointed probes are the three most common types. Tweezer probes are used for closely spaced test points, as for instance surface-mount devices. The connectors are attached to flexible, well insulated leads terminated with connectors appropriate for the meter. Probes are connected to portable meters typically by shrouded or recessed banana jacks, while benchtop meters may use banana jacks or
BNC connector The BNC connector (initialism of "Bayonet Neill–Concelman") is a miniature quick connect/disconnect radio frequency connector used for coaxial cable. It is designed to maintain the same characteristic impedance of the cable, with 50 ohm and 7 ...
s. 2 mm plugs and
binding posts A binding post is a connector commonly used on electronic test equipment to terminate (attach) a single wire or test lead. They are also found on loudspeakers and audio amplifiers as well as other electrical equipment. History A binding post ...
have also been used at times, but are less commonly used today. Indeed, safety ratings now require shrouded banana jacks. The banana jacks are typically placed with a standardized center-to-center distance of , to allow standard adapters or devices such as voltage multiplier or thermocouple probes to be plugged in.
Clamp meter In electrical and electronic engineering, a current clamp, also known as current probe, is an electrical device with jaws which open to allow clamping around an electrical conductor. This allows measurement of the current in a conductor without t ...
s clamp around a conductor carrying a current to measure without the need to connect the meter in series with the circuit, or make metallic contact at all. Those for AC measurement use the transformer principle; clamp-on meters to measure small current or direct current require more exotic sensors, such as; hall effect based systems that measure the nonchanging magnetic field to determine the current.


Safety features

Most multimeters include a
fuse Fuse or FUSE may refer to: Devices * Fuse (electrical), a device used in electrical systems to protect against excessive current ** Fuse (automotive), a class of fuses for vehicles * Fuse (hydraulic), a device used in hydraulic systems to protect ...
, or two fuses, which will sometimes prevent damage to the multimeter from a current overload on the highest current range. (For added safety, test leads with fuses built in are available.) A common error when operating a multimeter is to set the meter to measure resistance or current, and then connect it directly to a low-impedance voltage source. Unfused meters are often quickly destroyed by such errors; fused meters often survive. Fuses used in meters must carry the maximum measuring current of the instrument, but are intended to disconnect if operator error exposes the meter to a low-impedance fault. Meters with inadequate or unsafe fusing were not uncommon; this situation has led to the creation of the IEC61010 categories to rate the safety and robustness of meters. Digital meters are rated into four categories based on their intended application, as set forth by IEC 61010-1 and echoed by country and regional standards groups such as the CEN EN61010 standard. * Category I: used where equipment is not directly connected to the mains * Category II: used on single phase mains final subcircuits * Category III: used on permanently installed loads such as distribution panels, motors, and three-phase appliance outlets * Category IV: used on locations where fault current levels can be very high, such as supply service entrances, main panels, supply meters, and primary over-voltage protection equipment Each Category rating also specifies maximum safe transient voltages for selected measuring ranges in the meter. Category-rated meters also feature protections from over-current faults. On meters that allow interfacing with computers,
optical isolation An optical isolator, or optical diode, is an optical component which allows the transmission of light in only one direction. It is typically used to prevent unwanted feedback into an optical oscillator, such as a laser cavity. The operation o ...
may be used to protect attached equipment against high voltage in the measured circuit. Good quality multimeters designed to meet Category II and above standards include high rupture capacity (HRC) ceramic fuses typically rated at more than 20 A capacity; these are much less likely to fail explosively than more common glass fuses. They will also include high energy overvoltage MOV (Metal Oxide
Varistor A varistor is an electronic component with an electrical resistance that varies with the applied voltage. Also known as a voltage-dependent resistor (VDR), it has a nonlinear, non- ohmic current–voltage characteristic that is similar to that ...
) protection, and circuit over-current protection in the form of a
Polyswitch A resettable fuse or polymeric positive temperature coefficient device (PPTC) is a passive electronic component used to protect against overcurrent faults in electronic circuits. The device is also known as a multifuse or polyfuse or polyswitc ...
. Meters intended for testing in hazardous locations or for use on blasting circuits may require use of a manufacturer-specified battery to maintain their safety rating.


DMM alternatives

A quality general-purpose electronics DMM is generally considered adequate for measurements at signal levels greater than 1 mV or 1 μA, or below about 100 MΩ; these values are far from the theoretical limits of sensitivity, and are of considerable interest in some circuit design situations. Other instruments—essentially similar, but with higher sensitivity—are used for accurate measurements of very small or very large quantities. These include nanovoltmeters,
electrometer An electrometer is an electrical instrument for measuring electric charge or electrical potential difference. There are many different types, ranging from historical handmade mechanical instruments to high-precision electronic devices. Modern ...
s (for very low currents, and voltages with very high source resistance, such as 1 TΩ) and picoammeters. Accessories for more typical multimeters permit some of these measurements, as well. Such measurements are limited by available technology, and ultimately by inherent
thermal noise A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
.


Power supply

Analog meters can measure voltage and current by using power from the test circuit, but require a supplementary internal voltage source for resistance testing, while electronic meters always require an internal power supply to run their internal circuitry. Hand-held meters use batteries, while bench meters usually use mains power; either arrangement allows the meter to test devices. Testing often requires that the component under test be isolated from the circuit in which they are mounted, as otherwise stray or leakage current paths may distort measurements. In some cases, the voltage from the multimeter may turn active devices on, distorting a measurement, or in extreme cases even damage an element in the circuit being investigated.


See also

*
Electronic test equipment Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipmen ...
*
Electricity meter North American domestic analog electricity meter. Electricity meter with transparent plastic case (Israel) North American domestic electronic electricity meter An electricity meter, electric meter, electrical meter, energy meter, or kilowa ...


References


External links

{{Authority control Electronic test equipment Electrical test equipment Electrical meters Electronics work tools Measuring instruments