kasugamycin
   HOME

TheInfoList



OR:

Kasugamycin (Ksg) is an
aminoglycoside Aminoglycoside is a medicinal and bacteriologic category of traditional Gram-negative antibacterial medications that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside (sugar). The term can also refer ...
antibiotic that was originally isolated in 1965, from '' Streptomyces kasugaensis'', a '' Streptomyces'' strain found near the
Kasuga shrine is a Shinto shrine in Nara, Nara Prefecture, Japan. It is the shrine of the Fujiwara family, established in 768 CE and rebuilt several times over the centuries. The interior is famous for its many bronze lanterns, as well as the many stone lan ...
in
Nara The National Archives and Records Administration (NARA) is an " independent federal agency of the United States government within the executive branch", charged with the preservation and documentation of government and historical records. It ...
, Japan. Kasugamycin was discovered by
Hamao Umezawa was a Japanese scientist who discovered several antimicrobial agents and enzyme inhibitors. Umezawa was born in Obama City, Fukui Prefecture, as the second son in a family of seven children. After graduating from Musashi Junior and Senior High ...
, who also discovered
kanamycin Kanamycin A, often referred to simply as kanamycin, is an antibiotic used to treat severe bacterial infections and tuberculosis. It is not a first line treatment. It is used by mouth, injection into a vein, or injection into a muscle. Kanamyci ...
and
bleomycin -13- (1''H''-imidazol-5-yl)methyl9-hydroxy-5- 1''R'')-1-hydroxyethyl8,10-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazapentadec-1-yl}-2,4'-bi-1,3-thiazol-4-yl)carbonyl]amino}propyl)(dimethyl)sulfonium , chemical_formula = , C=55 , H=84 , N=1 ...
, as a drug that prevent growth of a fungus causing rice blast disease. It was later found to inhibit bacterial growth also. It exists as a white, crystalline substance with the chemical formula C14H28ClN3O10 (kasugamycin hydrochloride). It is also known as kasumin.{{cite encyclopedia, authors=Franz Müller, Peter Ackermann, Paul Margot, title=Fungicides, Agricultural, 2. Individual Fungicides, encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry, publisher=Wiley-VCH, place=Weinheim, year=2012, doi=10.1002/14356007.o12_o06, isbn=978-3527306732


Mechanism of action

Like many of the known natural antibiotics, kasugamycin inhibits proliferation of bacteria by tampering with their ability to make new
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s, the ribosome being the major target. Kasugamycin inhibits protein synthesis at the step of
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
initiation. Kasugamycin inhibition is thought to occur by direct competition with initiator transfer RNA. Recent experiments suggest that kasugamycin indirectly induces dissociation of P-site-bound fMet-tRNAfMet from 30S subunits through perturbation of the
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
, thereby interfering with translation initiation. Kasugamycin specifically inhibits translation initiation of canonical but not of leaderless mRNA. For initiation on leaderless mRNA, the overlap between mRNA and kasugamycin is reduced and the binding of tRNA is further stabilized by the presence of the 50S subunit, minimizing Ksg efficacy. Kasugamycin also induces the formation of unusual 61S ribosomes in vivo, which are proficient in selectively translating leaderless mRNA. 61S particles are stable and are devoid of more than six proteins of the small subunit, including the functionally important proteins S1 and S12.


Structural basis for kasugamycin action

The structure of the kasugamycin-70S ribosome complex from ''Escherichia coli'' has been determined by
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
at 3.5-A resolution. The drug binds within the messenger RNA channel of the 30S subunit between the universally conserved G926 and A794 nucleotides in 16S
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosom ...
, which are sites of kasugamycin resistance. The kasugamycin binding sites are present on top of helix 44 (h44), spanning the region between h24 and h28, which contacts the conserved nucleotides A794 and G926. Neither binding position overlaps with P-site tRNA. Instead, kasugamycin mimics the codon nucleotides at the P and E sites by binding within the path of the mRNA, thus perturbing the mRNA-tRNA codon-anticodon interaction.


Resistance

Low level resistance to kasugamycin is acquired by
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
s in the 16S rRNA
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Ross ...
KsgA which methylates the nucleotides A1518 and A1519 in 16S rRNA. Spontaneous ksgA mutations conferring a modest level of resistance to kasugamycin occur at a high frequency of 10−6. Once cells acquire the ksgA mutations, they produce high-level kasugamycin resistance at an extraordinarily high frequency (100-fold greater frequency than that observed in the ksgA+ strain). Surprisingly, kasugamycin resistance mutations do not inhibit binding of the drug to the ribosome. Present structural and biochemical results indicate that inhibition by kasugamycin and kasugamycin resistance are closely linked to the structure of the mRNA at the junction of the peptidyl-tRNA and exit-tRNA sites (P and E sites).


References


Further reading

1. Okuyama, A., Machiyama, N., Kinoshita, T., and Tanaka, N. (1971). Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem. Biophys. Res. Commun. 43, 196–199. 2. Schluenzen, F., Takemoto, C., Wilson, D.N., Kaminishi, T., Harms, J.M., Hanawa-Suetsugu, K., Szaflarski, W., Kawazoe, M., Shirouzu, M., Nierhaus, K.H., et al. (2006). The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat. Struct. Mol. Biol. 13, 871–878. 3. Schuwirth, B.S., Day, J.M., Hau, C.W., Janssen, G.R., Dahlberg, A.E., Cate, J.H., and Vila-Sanjurjo, A. (2006). Structural analysis of kasugamycin inhibition of translation. Nat. Struct. Mol. Biol. 13, 879–886. 4. Kaberdina A.C., Szaflarski W., Nierhaus K.H., and Moll I. (2009). An Unexpected Type of Ribosomes Induced by Kasugamycin: A Look into Ancestral Times of Protein Synthesis?. Mol. Cell. 33(2):141-2. 5. Ochi K., Kim J., Tanaka Y., Wang G., Masuda K., Nanamiya H., Okamoto S., Tokuyama S., Adachi Y. and Kawamura F. (2009). Inactivation of KsgA, a 16S rRNA Methyltransferase, Causes Vigorous Emergence of Mutants with High-Level Kasugamycin Resistance. Antimicrobial Agents and Chemotherapy, 53,1 (193-201). 6. Mankin A. (2006). Antibiotic blocks mRNA path on the ribosome. Nature Structural & Molecular Biology - 13, 858 – 860. Aminoglycoside antibiotics