In

^{2} = 0 (that is, ε is nilpotent). Every dual number has the form ''z'' = ''a'' + ''b''ε with ''a'' and ''b'' being uniquely determined real numbers.
One application of dual numbers is automatic differentiation. This application can be generalized to polynomials in n variables, using the

^{2} = 0 is true, but ''x'' = 0 need not be true at the same time. Since the background logic is intuitionistic logic, it is not immediately clear how to classify this system with regard to classes 1, 2, and 3. Intuitionistic analogues of these classes would have to be developed first.

Abraham Robinson
Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincor ...

provided an answer following the first approach. The extended set is called the

Abraham Robinson
Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincor ...

's infinitesimals include texts by Stroyan (dating from 1972) and Howard Jerome Keisler ( Elementary Calculus: An Infinitesimal Approach). Students easily relate to the intuitive notion of an infinitesimal difference 1-" 0.999...", where "0.999..." differs from its standard meaning as the real number 1, and is reinterpreted as an infinite terminating extended decimal that is strictly less than 1.
Another elementary calculus text that uses the theory of infinitesimals as developed by Robinson is ''Infinitesimal Calculus'' by Henle and Kleinberg, originally published in 1979. The authors introduce the language of first-order logic, and demonstrate the construction of a first order model of the hyperreal numbers. The text provides an introduction to the basics of integral and differential calculus in one dimension, including sequences and series of functions. In an Appendix, they also treat the extension of their model to the ''hyperhyper''reals, and demonstrate some applications for the extended model.
An elementary calculus text based on smooth infinitesial analysis is Bell, John L. (2008). A Primer of Infinitesimal Analysis, 2nd Edition. Cambridge University Press. ISBN 9780521887182.
A more recent calculus text utilizing infinitesimals is Dawson, C. Bryan (2022), Calculus Set Free: Infinitesimals to the Rescue, Oxford University Press. ISBN 9780192895608.

mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...

, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin
New Latin (also called Neo-Latin or Modern Latin) is the revival of Literary Latin used in original, scholarly, and scientific works since about 1500. Modern scholarly and technical nomenclature, such as in zoological and botanical taxonomy ...

coinage ''infinitesimus'', which originally referred to the " infinity- th" item in a sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...

.
Infinitesimals do not exist in the standard real number system, but they do exist in other number systems, such as the surreal number system and the hyperreal number system, which can be thought of as the real numbers augmented with both infinitesimal and infinite quantities; the augmentations are the reciprocals of one another.
Infinitesimal numbers were introduced in the development of calculus, in which the derivative was first conceived as a ratio of two infinitesimal quantities. This definition was not rigorously formalized. As calculus developed further, infinitesimals were replaced by limits, which can be calculated using the standard real numbers.
Infinitesimals regained popularity in the 20th century with Abraham Robinson
Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincor ...

's development of nonstandard analysis and the hyperreal numbers, which, after centuries of controversy, showed that a formal treatment of infinitesimal calculus was possible. Following this, mathematicians developed surreal numbers, a related formalization of infinite and infinitesimal numbers that include both hyperreal cardinal and ordinal numbers, which is the largest ordered field.
Vladimir Arnold wrote in 1990:
The crucial insight for making infinitesimals feasible mathematical entities was that they could still retain certain properties such as angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles a ...

or slope, even if these entities were infinitely small.
Infinitesimals are a basic ingredient in calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arith ...

as developed by Leibniz, including the law of continuity and the transcendental law of homogeneity. In common speech, an infinitesimal object is an object that is smaller than any feasible measurement, but not zero in size—or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective in mathematics, ''infinitesimal'' means infinitely small, smaller than any standard real number. Infinitesimals are often compared to other infinitesimals of similar size, as in examining the derivative of a function. An infinite number of infinitesimals are summed to calculate an integral.
The concept of infinitesimals was originally introduced around 1670 by either Nicolaus Mercator
Nicholas (Nikolaus) Mercator (c. 1620, Holstein – 1687, Versailles), also known by his German name Kauffmann, was a 17th-century mathematician.
He was born in Eutin, Schleswig-Holstein, Germany and educated at Rostock and Leyden after which ...

or Gottfried Wilhelm Leibniz
Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mathem ...

. Archimedes used what eventually came to be known as the method of indivisibles
In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows:
* 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that ...

in his work ''The Method of Mechanical Theorems
''The Method of Mechanical Theorems'' ( el, Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος), also referred to as ''The Method'', is one of the major surviving works of the ancient Greek polymath Ar ...

'' to find areas of regions and volumes of solids. In his formal published treatises, Archimedes solved the same problem using the method of exhaustion. The 15th century saw the work of Nicholas of Cusa
Nicholas of Cusa (1401 – 11 August 1464), also referred to as Nicholas of Kues and Nicolaus Cusanus (), was a German Catholic cardinal, philosopher, theologian, jurist, mathematician, and astronomer. One of the first German proponents of Ren ...

, further developed in the 17th century by Johannes Kepler
Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...

, in particular, the calculation of the area of a circle by representing the latter as an infinite-sided polygon. Simon Stevin
Simon Stevin (; 1548–1620), sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated va ...

's work on the decimal representation of all numbers in the 16th century prepared the ground for the real continuum. Bonaventura Cavalieri
Bonaventura Francesco Cavalieri ( la, Bonaventura Cavalerius; 1598 – 30 November 1647) was an Italian mathematician and a Jesuate. He is known for his work on the problems of optics and motion, work on indivisibles, the precursors of ...

's method of indivisibles led to an extension of the results of the classical authors. The method of indivisibles related to geometrical figures as being composed of entities of codimension
In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties.
For affine and projective algebraic varieties, the codimension equal ...

1. John Wallis
John Wallis (; la, Wallisius; ) was an English clergyman and mathematician who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 he served as chief cryptographer for Parliament and, later, the roya ...

's infinitesimals differed from indivisibles in that he would decompose geometrical figures into infinitely thin building blocks of the same dimension as the figure, preparing the ground for general methods of the integral calculus. He exploited an infinitesimal denoted 1/∞ in area calculations.
The use of infinitesimals by Leibniz relied upon heuristic principles, such as the law of continuity: what succeeds for the finite numbers succeeds also for the infinite numbers and vice versa; and the transcendental law of homogeneity that specifies procedures for replacing expressions involving unassignable quantities, by expressions involving only assignable ones. The 18th century saw routine use of infinitesimals by mathematicians such as Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries ...

and Joseph-Louis Lagrange. Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He ...

exploited infinitesimals both in defining continuity in his '' Cours d'Analyse'', and in defining an early form of a Dirac delta function. As Cantor and Dedekind were developing more abstract versions of Stevin's continuum, Paul du Bois-Reymond wrote a series of papers on infinitesimal-enriched continua based on growth rates of functions. Du Bois-Reymond's work inspired both Émile Borel and Thoralf Skolem. Borel explicitly linked du Bois-Reymond's work to Cauchy's work on rates of growth of infinitesimals. Skolem developed the first non-standard models of arithmetic in 1934. A mathematical implementation of both the law of continuity and infinitesimals was achieved by Abraham Robinson
Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincor ...

in 1961, who developed nonstandard analysis based on earlier work by Edwin Hewitt in 1948 and Jerzy Łoś in 1955. The hyperreals
In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbe ...

implement an infinitesimal-enriched continuum and the transfer principle
In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first ...

implements Leibniz's law of continuity. The standard part function implements Fermat's adequality.
History of the infinitesimal

The notion of infinitely small quantities was discussed by the Eleatic School. TheGreek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
* Greeks, an ethnic group.
* Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancesto ...

mathematician Archimedes (c. 287 BC – c. 212 BC), in ''The Method of Mechanical Theorems
''The Method of Mechanical Theorems'' ( el, Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος), also referred to as ''The Method'', is one of the major surviving works of the ancient Greek polymath Ar ...

'', was the first to propose a logically rigorous definition of infinitesimals. His Archimedean property defines a number ''x'' as infinite if it satisfies the conditions , ''x'', >1, , ''x'', >1+1, , ''x'', >1+1+1, ..., and infinitesimal if ''x''≠0 and a similar set of conditions holds for ''x'' and the reciprocals of the positive integers. A number system is said to be Archimedean if it contains no infinite or infinitesimal members.
The English mathematician John Wallis
John Wallis (; la, Wallisius; ) was an English clergyman and mathematician who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 he served as chief cryptographer for Parliament and, later, the roya ...

introduced the expression 1/∞ in his 1655 book ''Treatise on the Conic Sections''. The symbol, which denotes the reciprocal, or inverse, of ∞, is the symbolic representation of the mathematical concept of an infinitesimal. In his ''Treatise on the Conic Sections'', Wallis also discusses the concept of a relationship between the symbolic representation of infinitesimal 1/∞ that he introduced and the concept of infinity for which he introduced the symbol ∞. The concept suggests a thought experiment
A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences.
History
The ancient Greek ''deiknymi'' (), or thought experiment, "was the most a ...

of adding an infinite number of parallelogram
In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of e ...

s of infinitesimal width to form a finite area. This concept was the predecessor to the modern method of integration used in integral calculus
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with d ...

. The conceptual origins of the concept of the infinitesimal 1/∞ can be traced as far back as the Greek philosopher Zeno of Elea
Zeno of Elea (; grc, Ζήνων ὁ Ἐλεᾱ́της; ) was a pre-Socratic Greek philosopher of Magna Graecia and a member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known fo ...

, whose Zeno's dichotomy paradox was the first mathematical concept to consider the relationship between a finite interval and an interval approaching that of an infinitesimal-sized interval.
Infinitesimals were the subject of political and religious controversies in 17th century Europe, including a ban on infinitesimals issued by clerics in Rome in 1632.
Prior to the invention of calculus mathematicians were able to calculate tangent lines using Pierre de Fermat
Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he ...

's method of adequality and René Descartes' method of normals. There is debate among scholars as to whether the method was infinitesimal or algebraic in nature. When Newton and Leibniz invented the calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arith ...

, they made use of infinitesimals, Newton's '' fluxions'' and Leibniz' '' differential''. The use of infinitesimals was attacked as incorrect by Bishop Berkeley in his work '' The Analyst''. Mathematicians, scientists, and engineers continued to use infinitesimals to produce correct results. In the second half of the nineteenth century, the calculus was reformulated by Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He ...

, Bernard Bolzano, Karl Weierstrass, Cantor, Dedekind, and others using the (ε, δ)-definition of limit
Although the function (sin ''x'')/''x'' is not defined at zero, as ''x'' becomes closer and closer to zero, (sin ''x'')/''x'' becomes arbitrarily close to 1. In other words, the limit of (sin ''x'')/''x'', as ''x'' approaches z ...

and set theory.
While the followers of Cantor, Dedekind, and Weierstrass sought to rid analysis of infinitesimals, and their philosophical allies like Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, a ...

and Rudolf Carnap
Rudolf Carnap (; ; 18 May 1891 – 14 September 1970) was a German-language philosopher who was active in Europe before 1935 and in the United States thereafter. He was a major member of the Vienna Circle and an advocate of logical positivism ...

declared that infinitesimals are ''pseudoconcepts'', Hermann Cohen
Hermann Cohen (4 July 1842 – 4 April 1918) was a German Jewish philosopher, one of the founders of the Marburg school of neo-Kantianism, and he is often held to be "probably the most important Jewish philosopher of the nineteenth cent ...

and his Marburg school of neo-Kantianism
In late modern continental philosophy, neo-Kantianism (german: Neukantianismus) was a revival of the 18th-century philosophy of Immanuel Kant. The Neo-Kantians sought to develop and clarify Kant's theories, particularly his concept of the "thing ...

sought to develop a working logic of infinitesimals. The mathematical study of systems containing infinitesimals continued through the work of Levi-Civita, Giuseppe Veronese, Paul du Bois-Reymond, and others, throughout the late nineteenth and the twentieth centuries, as documented by Philip Ehrlich (2006). In the 20th century, it was found that infinitesimals could serve as a basis for calculus and analysis (see hyperreal numbers).
First-order properties

In extending the real numbers to include infinite and infinitesimal quantities, one typically wishes to be as conservative as possible by not changing any of their elementary properties. This guarantees that as many familiar results as possible are still available. Typically ''elementary'' means that there is no quantification over sets, but only over elements. This limitation allows statements of the form "for any number x..." For example, the axiom that states "for any number ''x'', ''x'' + 0 = ''x''" would still apply. The same is true for quantification over several numbers, e.g., "for any numbers ''x'' and ''y'', ''xy'' = ''yx''." However, statements of the form "for any ''set'' ''S'' of numbers ..." may not carry over. Logic with this limitation on quantification is referred to as first-order logic. The resulting extended number system cannot agree with the reals on all properties that can be expressed by quantification over sets, because the goal is to construct a non-Archimedean system, and the Archimedean principle can be expressed by quantification over sets. One can conservatively extend any theory including reals, including set theory, to include infinitesimals, just by adding a countably infinite list of axioms that assert that a number is smaller than 1/2, 1/3, 1/4, and so on. Similarly, the completeness property cannot be expected to carry over, because the reals are the unique complete ordered field up to isomorphism. We can distinguish three levels at which a non-Archimedean number system could have first-order properties compatible with those of the reals: # An ordered field obeys all the usual axioms of the real number system that can be stated in first-order logic. For example, the commutativity axiom ''x'' + ''y'' = ''y'' + ''x'' holds. # A real closed field has all the first-order properties of the real number system, regardless of whether they are usually taken as axiomatic, for statements involving the basic ordered-field relations +, ×, and ≤. This is a stronger condition than obeying the ordered-field axioms. More specifically, one includes additional first-order properties, such as the existence of a root for every odd-degree polynomial. For example, every number must have acube root
In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. ...

.
# The system could have all the first-order properties of the real number system for statements involving ''any'' relations (regardless of whether those relations can be expressed using +, ×, and ≤). For example, there would have to be a sine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is op ...

function that is well defined for infinite inputs; the same is true for every real function.
Systems in category 1, at the weak end of the spectrum, are relatively easy to construct but do not allow a full treatment of classical analysis using infinitesimals in the spirit of Newton and Leibniz. For example, the transcendental functions
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function.
In other words, a transcendental function "transcends" algebra in that it cannot be expressed alg ...

are defined in terms of infinite limiting processes, and therefore there is typically no way to define them in first-order logic. Increasing the analytic strength of the system by passing to categories 2 and 3, we find that the flavor of the treatment tends to become less constructive, and it becomes more difficult to say anything concrete about the hierarchical structure of infinities and infinitesimals.
Number systems that include infinitesimals

Formal series

Laurent series

An example from category 1 above is the field ofLaurent series
In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansio ...

with a finite number of negative-power terms. For example, the Laurent series consisting only of the constant term 1 is identified with the real number 1, and the series with only the linear term ''x'' is thought of as the simplest infinitesimal, from which the other infinitesimals are constructed. Dictionary ordering is used, which is equivalent to considering higher powers of ''x'' as negligible compared to lower powers. David O. Tall refers to this system as the super-reals, not to be confused with the superreal number
In abstract algebra, the superreal numbers are a class of extensions of the real numbers, introduced by H. Garth Dales and W. Hugh Woodin as a generalization of the hyperreal numbers and primarily of interest in non-standard analysis, model theor ...

system of Dales and Woodin. Since a Taylor series evaluated with a Laurent series as its argument is still a Laurent series, the system can be used to do calculus on transcendental functions if they are analytic. These infinitesimals have different first-order properties than the reals because, for example, the basic infinitesimal ''x'' does not have a square root.
The Levi-Civita field

The Levi-Civita field is similar to the Laurent series, but is algebraically closed. For example, the basic infinitesimal x has a square root. This field is rich enough to allow a significant amount of analysis to be done, but its elements can still be represented on a computer in the same sense that real numbers can be represented in floating-point.Transseries

The field oftransseries In mathematics, the field \mathbb^ of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of ob ...

is larger than the Levi-Civita field. An example of a transseries is:
:$e^\backslash sqrt+\backslash ln\backslash ln\; x+\backslash sum\_^\backslash infty\; e^x\; x^,$
where for purposes of ordering ''x'' is considered infinite.
Surreal numbers

Conway'ssurreal number
In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals s ...

s fall into category 2, except that the surreal numbers form a proper class and not a set, They are a system designed to be as rich as possible in different sizes of numbers, but not necessarily for convenience in doing analysis, in the sense that every ordered field is a subfield of the surreal numbers. There is a natural extension of the exponential function to the surreal numbers.
Hyperreals

The most widespread technique for handling infinitesimals is the hyperreals, developed byAbraham Robinson
Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincor ...

in the 1960s. They fall into category 3 above, having been designed that way so all of classical analysis can be carried over from the reals. This property of being able to carry over all relations in a natural way is known as the transfer principle
In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first ...

, proved by Jerzy Łoś in 1955. For example, the transcendental function sin has a natural counterpart *sin that takes a hyperreal input and gives a hyperreal output, and similarly the set of natural numbers $\backslash mathbb$ has a natural counterpart $^*\backslash mathbb$, which contains both finite and infinite integers. A proposition such as $\backslash forall\; n\; \backslash in\; \backslash mathbb,\; \backslash sin\; n\backslash pi=0$ carries over to the hyperreals as $\backslash forall\; n\; \backslash in\; ^*\backslash mathbb,\; ^*\backslash !\backslash !\backslash sin\; n\backslash pi=0$ .
Superreals

Thesuperreal number
In abstract algebra, the superreal numbers are a class of extensions of the real numbers, introduced by H. Garth Dales and W. Hugh Woodin as a generalization of the hyperreal numbers and primarily of interest in non-standard analysis, model theor ...

system of Dales and Woodin is a generalization of the hyperreals. It is different from the super-real system defined by David Tall.
Dual numbers

In linear algebra, thedual number
In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form , where and are real numbers, and is a symbol taken to satisfy \varepsilon^2 = 0 with \varepsilon\neq 0.
D ...

s extend the reals by adjoining one infinitesimal, the new element ε with the property εExterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...

of an n-dimensional vector space.
Smooth infinitesimal analysis

Synthetic differential geometry
In mathematics, synthetic differential geometry is a formalization of the theory of differential geometry in the language of topos theory. There are several insights that allow for such a reformulation. The first is that most of the analytic da ...

or smooth infinitesimal analysis
Smooth infinitesimal analysis is a modern reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of category theory, it views all functions as being continuous and incapable of bei ...

have roots in category theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...

. This approach departs from the classical logic used in conventional mathematics by denying the general applicability of the law of excluded middle – i.e., ''not'' (''a'' ≠ ''b'') does not have to mean ''a'' = ''b''. A ''nilsquare'' or '' nilpotent'' infinitesimal can then be defined. This is a number ''x'' where ''x''Infinitesimal delta functions

Cauchy used an infinitesimal $\backslash alpha$ to write down a unit impulse, infinitely tall and narrow Dirac-type delta function $\backslash delta\_\backslash alpha$ satisfying $\backslash int\; F(x)\backslash delta\_\backslash alpha(x)\; =\; F(0)$ in a number of articles in 1827, see Laugwitz (1989). Cauchy defined an infinitesimal in 1821 (Cours d'Analyse) in terms of a sequence tending to zero. Namely, such a null sequence becomes an infinitesimal in Cauchy's andLazare Carnot
Lazare Nicolas Marguerite, Count Carnot (; 13 May 1753 – 2 August 1823) was a French mathematician, physicist and politician. He was known as the "Organizer of Victory" in the French Revolutionary Wars and Napoleonic Wars.
Education and e ...

's terminology.
Modern set-theoretic approaches allow one to define infinitesimals via the ultrapower construction, where a null sequence becomes an infinitesimal in the sense of an equivalence class modulo a relation defined in terms of a suitable ultrafilter. The article by Yamashita (2007) contains bibliography on modern Dirac delta functions in the context of an infinitesimal-enriched continuum provided by the hyperreals
In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbe ...

.
Logical properties

The method of constructing infinitesimals of the kind used in nonstandard analysis depends on the model and which collection of axioms are used. We consider here systems where infinitesimals can be shown to exist. In 1936 Maltsev proved the compactness theorem. This theorem is fundamental for the existence of infinitesimals as it proves that it is possible to formalise them. A consequence of this theorem is that if there is a number system in which it is true that for any positive integer ''n'' there is a positive number ''x'' such that 0 < ''x'' < 1/''n'', then there exists an extension of that number system in which it is true that there exists a positive number ''x'' such that for any positive integer ''n'' we have 0 < ''x'' < 1/''n''. The possibility to switch "for any" and "there exists" is crucial. The first statement is true in the real numbers as given in ZFC set theory : for any positive integer ''n'' it is possible to find a real number between 1/''n'' and zero, but this real number depends on ''n''. Here, one chooses ''n'' first, then one finds the corresponding ''x''. In the second expression, the statement says that there is an ''x'' (at least one), chosen first, which is between 0 and 1/''n'' for any ''n''. In this case ''x'' is infinitesimal. This is not true in the real numbers (R) given by ZFC. Nonetheless, the theorem proves that there is a model (a number system) in which this is true. The question is: what is this model? What are its properties? Is there only one such model? There are in fact many ways to construct such aone-dimensional
In physics and mathematics, a sequence of ''n'' numbers can specify a location in ''n''-dimensional space. When , the set of all such locations is called a one-dimensional space. An example of a one-dimensional space is the number line, where ...

linearly ordered
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X:
# a \leq a ( reflexive) ...

set of numbers, but fundamentally, there are two different approaches:
: 1) Extend the number system so that it contains more numbers than the real numbers.
: 2) Extend the axioms (or extend the language) so that the distinction between the infinitesimals and non-infinitesimals can be made in the real numbers themselves.
In 1960, hyperreals
In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbe ...

and contains numbers less in absolute value than any positive real number. The method may be considered relatively complex but it does prove that infinitesimals exist in the universe of ZFC set theory. The real numbers are called standard numbers and the new non-real hyperreals are called nonstandard.
In 1977 Edward Nelson
Edward Nelson (May 4, 1932 – September 10, 2014) was an American mathematician. He was professor in the Mathematics Department at Princeton University. He was known for his work on mathematical physics and mathematical logic. In mathematic ...

provided an answer following the second approach. The extended axioms are IST, which stands either for Internal set theory
Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the nonstandard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, ...

or for the initials of the three extra axioms: Idealization, Standardization, Transfer. In this system, we consider that the language is extended in such a way that we can express facts about infinitesimals. The real numbers are either standard or nonstandard. An infinitesimal is a nonstandard real number that is less, in absolute value, than any positive standard real number.
In 2006 Karel Hrbacek developed an extension of Nelson's approach in which the real numbers are stratified in (infinitely) many levels; i.e., in the coarsest level, there are no infinitesimals nor unlimited numbers. Infinitesimals are at a finer level and there are also infinitesimals with respect to this new level and so on.
Infinitesimals in teaching

Calculus textbooks based on infinitesimals include the classic '' Calculus Made Easy'' by Silvanus P. Thompson (bearing the motto "What one fool can do another can") and the German text ''Mathematik fur Mittlere Technische Fachschulen der Maschinenindustrie'' by R. Neuendorff. Pioneering works based onFunctions tending to zero

In a related but somewhat different sense, which evolved from the original definition of "infinitesimal" as an infinitely small quantity, the term has also been used to refer to a function tending to zero. More precisely, Loomis and Sternberg's ''Advanced Calculus'' defines the function class of infinitesimals, $\backslash mathfrak$, as a subset of functions $f:V\backslash to\; W$ between normed vector spaces by$\backslash mathfrak(V,W)\; =\; \backslash $,as well as two related classes $\backslash mathfrak,\backslash mathfrak$ (see

Big-O notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund La ...

) by $\backslash mathfrak(V,W)\; =\; \backslash $, and

$\backslash mathfrak(V,W)\; =\; \backslash $.The set inclusions $\backslash mathfrak(V,W)\backslash subsetneq\backslash mathfrak(V,W)\backslash subsetneq\backslash mathfrak(V,W)$generally hold. That the inclusions are proper is demonstrated by the real-valued functions of a real variable $f:x\backslash mapsto\; ,\; x,\; ^$, $g:x\backslash mapsto\; x$, and $h:x\backslash mapsto\; x^2$:

$f,g,h\backslash in\backslash mathfrak(\backslash mathbb,\backslash mathbb),\backslash \; g,h\backslash in\backslash mathfrak(\backslash mathbb,\backslash mathbb),\backslash \; h\backslash in\backslash mathfrak(\backslash mathbb,\backslash mathbb)$ but $f,g\backslash notin\backslash mathfrak(\backslash mathbb,\backslash mathbb)$ and $f\backslash notin\backslash mathfrak(\backslash mathbb,\backslash mathbb)$.As an application of these definitions, a mapping $F:V\backslash to\; W$ between normed vector spaces is defined to be differentiable at $\backslash alpha\backslash in\; V$ if there is a $T\backslash in\backslash mathrm(V,W)$ V\to W">.e, a bounded linear map $V\backslash to\; W$such that

$;\; href="/html/ALL/l/(\backslash alpha+\backslash xi)-F(\backslash alpha).html"\; ;"title="(\backslash alpha+\backslash xi)-F(\backslash alpha)">(\backslash alpha+\backslash xi)-F(\backslash alpha)$in a neighborhood of $\backslash alpha$. If such a map exists, it is unique; this map is called the ''differential'' and is denoted by $dF\_\backslash alpha$, coinciding with the traditional notation for the classical (though logically flawed) notion of a differential as an infinitely small "piece" of ''F''. This definition represents a generalization of the usual definition of differentiability for vector-valued functions of (open subsets of) Euclidean spaces.

Array of random variables

Let $(\backslash Omega,\backslash mathcal,\backslash mathbb)$ be a probability space and let $n\backslash in\backslash mathbb$. An array $\backslash $ of random variables is called infinitesimal if for every $\backslash epsilon>0$, we have: :$\backslash max\_\backslash mathbb\backslash \backslash to\; 0\backslash text\; n\backslash to\backslash infty$ The notion of infinitesimal array is essential in some central limit theorems and it is easily seen by monotonicity of the expectation operator that any array satisfying Lindeberg's condition is infinitesimal, thus playing an important role in Lindeberg's Central Limit Theorem (a generalization of thecentral limit theorem
In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themse ...

).
See also

*Cantor function
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. ...

* Differential (infinitesimal)
* Indeterminate form
* Infinitesimal calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arit ...

* Infinitesimal transformation
In mathematics, an infinitesimal transformation is a limiting form of ''small'' transformation. For example one may talk about an infinitesimal rotation of a rigid body, in three-dimensional space. This is conventionally represented by a 3×3 ...

* Instant
* Nonstandard calculus
* Model theory
Notes

References

* B. Crowell, "Calculus" (2003) * Dawson, C. Bryan, "Calculus Set Free: Infinitesimals to the Rescue" (2022) Oxford University Press *Ehrlich, P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Arch. Hist. Exact Sci. 60, no. 1, 1–121. * Malet, Antoni. "Barrow, Wallis, and the remaking of seventeenth-century indivisibles". ''Centaurus'' 39 (1997), no. 1, 67–92. * J. Keisler, "Elementary Calculus" (2000) University of Wisconsin * K. Stroyan "Foundations of Infinitesimal Calculus" (1993) * Stroyan, K. D.; Luxemburg, W. A. J. Introduction to the theory of infinitesimals. Pure and Applied Mathematics, No. 72. Academic Press arcourt Brace Jovanovich, Publishers New York-London, 1976. * Robert Goldblatt (1998) "Lectures on the hyperreals" Springer. * Cutland et al. "Nonstandard Methods and Applications in Mathematics" (2007) Lecture Notes in Logic 25, Association for Symbolic Logic. * "The Strength of Nonstandard Analysis" (2007) Springer. * * Yamashita, H.: Comment on: "Pointwise analysis of scalar Fields: a nonstandard approach" . Math. Phys. 47 (2006), no. 9, 092301; 16 pp. J. Math. Phys. 48 (2007), no. 8, 084101, 1 page. {{Authority control Calculus History of calculus Infinity Nonstandard analysis History of mathematics Mathematical logic