HOME

TheInfoList



OR:

Glycorandomization, is a
drug discovery In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by ...
and
drug development Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery. It includes preclinical research on microorganisms and animals, filing for re ...
technology platform to enable the rapid diversification of bioactive small molecules, drug leads and/or approved drugs through the attachment of sugars. Initially developed as a facile method to manipulate carbohydrate substitutions of naturally occurring glycosides to afford the corresponding differentially glycosylated
natural product A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synt ...
libraries, glycorandomization applications have expanded to include both small molecules (drug leads and approved drugs) and even macromolecules (
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
). Also referred to as 'glycodiversification', glycorandomization has led to the discovery of new glycoside analogs which display improvements in potency, selectivity and/or ADMET as compared to the parent molecule.


Classification

The traditional method for attaching sugars to natural products, drugs or drug leads is by
chemical glycosylation A chemical glycosylation reaction involves the coupling of a glycosyl donor, to a glycosyl acceptor forming a glycoside. If both the donor and acceptor are sugars, then the product is an oligosaccharide. The reaction requires activation with ...
. This classical approach typically requires multiple protection/deprotection steps in addition to the key anomeric activation/coupling reaction which, depending upon the glycosyl donor/acceptor pair, can lead to a mixture of anomers. Unlike classical chemical glycosylation, glycorandomization methods are divergent (''i.e.'', diverge from a common starting material, see divergent synthesis) and are not dependent upon sugar/
aglycon An aglycone (aglycon or genin) is the compound remaining after the glycosyl group on a glycoside is replaced by a hydrogen atom. For example, the aglycone of a cardiac glycoside would be a steroid molecule. Detection A way to identify aglycone ...
protection/deprotection or sugar anomeric activation. Two complementary strategies to achieve glycorandomization/diversification have been developed: an enzyme-based strategy referred to as 'chemoenzymatic glycorandomization' and a chemoselective method known as 'neoglycorandomization'. Both methods start with free
reducing sugar A reducing sugar is any sugar that is capable of acting as a reducing agent. In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reacti ...
s and a target
aglycon An aglycone (aglycon or genin) is the compound remaining after the glycosyl group on a glycoside is replaced by a hydrogen atom. For example, the aglycone of a cardiac glycoside would be a steroid molecule. Detection A way to identify aglycone ...
to afford a library of compounds which differ solely by the sugars appended to the target natural product, drug or drug lead.


Chemoenzymatic glycorandomization

Chemoenzymatic glycorandomization was inspired by the early pathway engineering work of Hutchinson and coworkers that suggested natural product glycosyltransferases were capable of utilizing non-native sugar nucleotide donors. The initial platform for chemoenzymatic glycorandomization was based upon a set of two highly permissive sugar activation enzymes (a sugar anomeric
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule do ...
and sugar-1-phosphate nucleotidyltransferase) to afford sugar nucleotide libraries as donors for these promiscuous glycosyltransferases where the permissivity of the corresponding sugar kinase and nucleotidyltransferase was expanded by enzyme engineering and
directed evolution Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis (cre ...
. The first application of this three enzyme (kinase, nucleotidyltransferase and glycosyltransferase) strategy enabled the product of a set of >30 differentially glycosylated
vancomycin Vancomycin is a glycopeptide antibiotic medication used to treat a number of bacterial infections. It is recommended intravenously as a treatment for complicated skin infections, bloodstream infections, endocarditis, bone and joint infections, ...
s, some members of which were further diversified chemoselectively by virtue of the installation of sugars bearing chemoselective handles. This enzymatic platform has been further advanced through glycosyltransferase evolution and capitalizing upon the discovery of the reversibility of glycosyltransferase-catalyzed reactions first discovered in the context of
calicheamicin The calicheamicins are a class of enediyne antitumor antibiotics derived from the bacterium '' Micromonospora echinospora'', with calicheamicin γ1 being the most notable. It was isolated originally in the mid-1980s from the chalky soil, or " ca ...
biosynthesis.


Neoglycorandomization

Neoglycorandomization is a chemoselective glycodiversification method inspired by the alkoxyamine-based ‘neoglycosylation’ reaction first described Peri and Dumy. This reaction proceeds via an oxy-iminium intermediate to ultimately provide the more thermodynamically-favored closed ring neoglycoside. The neoglycosylation reaction is compatible with a wide range of saccharide and aglycon functionality where neoglycoside anomeric stereospecificity is a thermodynamically-driven. Importantly, structural and functional studies reveal neoglycosides to serve as good mimics of their ''O''-glycosidic comparators. The first neoglycorandomization proof of concept focused upon
digitoxin Digitoxin is a cardiac glycoside used for the treatment of heart failure and certain kinds of heart arrhythmia. It is a phytosteroid and is similar in structure and effects to digoxin, though the effects are longer-lasting. Unlike digoxin, whic ...
where the rapid generation and cancer cell line cytotoxicity screening of 78 digitoxigenin neoglycosides revealed unique analogs with improved anticancer activity and reduced potential for cardiotoxicity. This platform has since been automated and used as an effective medicinal chemistry tool to modulate the properties of a range of
natural products A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical sy ...
and
pharmaceutical drugs A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field an ...
.


Comparison

Both chemoenzymatic glycorandomization and neoglycorandomization use free reducing sugars and unprotected aglycons and are thereby a notable advance over classical glycosylation methods. A notable advantage of the enzymatic approach is the use of the corresponding genes encoding for the permissive kinases, nucleotidyltransferases and/or glycosyltransferases for in vivo
synthetic biology Synthetic biology (SynBio) is a multidisciplinary area of research that seeks to create new biological parts, devices, and systems, or to redesign systems that are already found in nature. It is a branch of science that encompasses a broad ran ...
applications to afford in vivo glycorandomization. However, it is important to note the enzymatic platform is dependent upon the permissivity of the enzymes employed. In contrast, the main hurdle to chemoselective neoglycorandomization is installation of the alkoxylamine handle. Unlike the enzymatic approach, the anomeric stereoselectivity of the chemoselective method depends upon the reducing sugar used and can, in some cases, lead to anomeric mixtures.


Uses

Glycorandomization is used in the
pharmaceutical industry The pharmaceutical industry discovers, develops, produces, and markets drugs or pharmaceutical drugs for use as medications to be administered to patients (or self-administered), with the aim to cure them, vaccinate them, or alleviate symptoms ...
and academic community to alter glycosylation patterns of sugar-containing natural products or to append sugars to drugs/drug leads. It provides a fast way to investigate the effect of subtle sugar modification on the pharmacological properties of the natural products analogues, thus, affording a new approach to drug discovery.


References

{{reflist Carbohydrate chemistry Drug discovery Medicinal chemistry Organic chemistry Pharmacognosy