glucose cycle
   HOME

TheInfoList



OR:

The glucose cycle (also known as the hepatic futile cycle) occurs primarily in the
liver The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it ...
and is the
dynamic balance Dynamics (from Greek δυναμικός ''dynamikos'' "powerful", from δύναμις ''dynamis'' "power") or dynamic may refer to: Physics and engineering * Dynamics (mechanics) ** Aerodynamics, the study of the motion of air ** Analytical dynam ...
between
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
and
glucose 6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way ...
. This is important for maintaining a constant concentration of glucose in the
blood stream The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
.


Function

The glucose cycle is required for one of the liver functions; the
homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
of glucose in the blood stream. When the blood glucose level is too high, glucose can be stored in the liver as glycogen. When the level is too low, the glycogen can be catabolised and glucose may re-enter the blood stream. The catabolic process occurs at the nonreducing end of glycogen. A phosphate group breaks the bond between C 1 of a glucose ring and the O that connects it to the next(phosphorolysis). One glucose unit is thus split off. Glycogen (with n glucose units) is converted into G-1-P(a PO4 group now attaches to C1 where O used to ) and glycogen (with n-1 glucose units) by enzyme glycogen phosphorylase. G-1-P is then converted into G-6-P by enzyme phosphoglucomutase. A water molecule hydrolyses G-6-P to glucose, the enzyme is glucose-6-phosphatase.


Cell specificity

When glucose enters a cell it is rapidly changed to glucose 6-phosphate, by
hexokinase A hexokinase is an enzyme that phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexok ...
or
glucokinase Glucokinase () is an enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Glucokinase occurs in cells in the liver and pancreas of humans and most other vertebrates. In each of these organs it plays an important role i ...
. The glucose cycle can occur in liver cells due to a liver specific enzyme
glucose-6-phosphatase The enzyme glucose 6-phosphatase (EC 3.1.3.9, G6Pase; systematic name D-glucose-6-phosphate phosphohydrolase) catalyzes the hydrolysis of glucose 6-phosphate, resulting in the creation of a phosphate group and free glucose: : D-glucose 6-phos ...
, which catalyse the dephosphorylation of glucose 6-phosphate back to glucose. Glucose-6-phosphate is the product of glycogenolysis or gluconeogenesis, where the goal is to increase free glucose in the blood due body being in catabolic state. Other cells such as muscle and brain cells do not contain glucose 6-phosphatase. As a result, any glucose 6-phosphate produced in those cells is committed to cellular metabolic pathways, primarily pentose phosphate pathway or glycolysis.


Regulation of glucose cycle

Flux through the glucose cycle is regulated by several hormones including insulin and glucagon as well as allosteric regulation of both hexokinase and glucose 6-phosphatase.


Diseases associated with glucose cycle

A deficiency in glucose 6-phosphatase that disrupts the liver glucose cycle, can lead to von Gierke's disease.


References

{{DEFAULTSORT:Glucose Cycle Metabolic pathways