formal system
   HOME

TheInfoList



OR:

A formal system is an abstract structure used for inferring
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of ...
s from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "
axiomatic system In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually conta ...
". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation.


Background

Each formal system is described by primitive
symbols A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different co ...
(which collectively form an
alphabet An alphabet is a standardized set of basic written graphemes (called letters) that represent the phonemes of certain spoken languages. Not all writing systems represent language in this way; in a syllabary, each character represents a s ...
) to finitely construct a
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of s ...
from a set of
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s through inferential
rules of formation In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe ...
. The system thus consists of valid formulas built up through finite combinations of the primitive symbols—combinations that are formed from the axioms in accordance with the stated rules. More formally, this can be expressed as the following: # A finite set of symbols, known as the alphabet, which concatenate formulas, so that a formula is just a finite string of symbols taken from the alphabet. # A
grammar In linguistics, the grammar of a natural language is its set of structure, structural constraints on speakers' or writers' composition of clause (linguistics), clauses, phrases, and words. The term can also refer to the study of such constraint ...
consisting of rules to form formulas from simpler formulas. A formula is said to be well-formed if it can be formed using the rules of the formal grammar. It is often required that there be a decision procedure for deciding whether a formula is well-formed. # A set of axioms, or
axiom schema In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. Formal definition An axiom schema is a formula in the metalanguage of an axiomatic system, in which one or more schematic variables ...
ta, consisting of well-formed formulas. # A set of
inference rules In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of ...
. A well-formed formula that can be inferred from the axioms is known as a theorem of the formal system.


Recursive

A formal system is said to be recursive (i.e. effective) or recursively enumerable if the set of axioms and the set of inference rules are decidable sets or semidecidable sets, respectively.


Inference and entailment

The entailment of the system by its logical foundation is what distinguishes a formal system from others which may have some basis in an abstract model. Often the formal system will be the basis for or even identified with a larger
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may ...
or field (e.g.
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
) consistent with the usage in modern mathematics such as model theory.


Formal language

A
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of s ...
is a language that is defined by a formal system. Like languages in
linguistics Linguistics is the scientific study of human language. It is called a scientific study because it entails a comprehensive, systematic, objective, and precise analysis of all aspects of language, particularly its nature and structure. Lingu ...
, formal languages generally have two aspects: * the syntax of a language is what the language looks like (more formally: the set of possible expressions that are valid utterances in the language) studied in formal language theory * the
semantics Semantics (from grc, σημαντικός ''sēmantikós'', "significant") is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and compu ...
of a language are what the utterances of the language mean (which is formalized in various ways, depending on the type of language in question) In
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
and
linguistics Linguistics is the scientific study of human language. It is called a scientific study because it entails a comprehensive, systematic, objective, and precise analysis of all aspects of language, particularly its nature and structure. Lingu ...
usually only the syntax of a formal language is considered via the notion of a
formal grammar In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe ...
. A formal grammar is a precise description of the syntax of a formal language: a set of strings. The two main categories of formal grammar are that of
generative grammar Generative grammar, or generativism , is a linguistic theory that regards linguistics as the study of a hypothesised innate grammatical structure. It is a biological or biologistic modification of earlier structuralist theories of linguistic ...
s, which are sets of rules for how strings in a language can be generated, and that of analytic grammars (or reductive grammar,) which are sets of rules for how a string can be analyzed to determine whether it is a member of the language. In short, an analytic grammar describes how to ''recognize'' when strings are members in the set, whereas a generative grammar describes how to ''write'' only those strings in the set. In mathematics, a formal language is usually not described by a formal grammar but by (a) natural language, such as English. Logical systems are defined by both a deductive system and natural language. Deductive systems in turn are only defined by natural language (see below).


Deductive system

A ''deductive system'', also called a ''deductive apparatus'' or a ''logic'', consists of the
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s (or
axiom schema In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. Formal definition An axiom schema is a formula in the metalanguage of an axiomatic system, in which one or more schematic variables ...
ta) and rules of inference that can be used to derive
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of ...
s of the system. Such deductive systems preserve deductive qualities in the formulas that are expressed in the system. Usually the quality we are concerned with is truth as opposed to falsehood. However, other modalities, such as
justification Justification may refer to: * Justification (epistemology), a property of beliefs that a person has good reasons for holding * Justification (jurisprudence), defence in a prosecution for a criminal offenses * Justification (theology), God's act of ...
or
belief A belief is an attitude that something is the case, or that some proposition is true. In epistemology, philosophers use the term "belief" to refer to attitudes about the world which can be either true or false. To believe something is to take ...
may be preserved instead. In order to sustain its deductive integrity, a ''deductive apparatus'' must be definable without reference to any intended interpretation of the language. The aim is to ensure that each line of a derivation is merely a syntactic consequence of the lines that precede it. There should be no element of any
interpretation Interpretation may refer to: Culture * Aesthetic interpretation, an explanation of the meaning of a work of art * Allegorical interpretation, an approach that assumes a text should not be interpreted literally * Dramatic Interpretation, an event ...
of the language that gets involved with the deductive nature of the system. An example of deductive system is first order predicate logic.


Logical system

A ''logical system'' or ''language'' (not be confused with the kind of "formal language" discussed above which is described by a formal grammar), is a deductive system (see section above; most commonly first order predicate logic) together with additional (non-logical) axioms. According to model theory, a logical system may be given one or more
semantics Semantics (from grc, σημαντικός ''sēmantikós'', "significant") is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and compu ...
or
interpretation Interpretation may refer to: Culture * Aesthetic interpretation, an explanation of the meaning of a work of art * Allegorical interpretation, an approach that assumes a text should not be interpreted literally * Dramatic Interpretation, an event ...
s which describe whether a well-formed formula is satisfied by a given structure. A structure that satisfies all the axioms of the formal system is known as a model of the logical system. A logical system is
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
if each well-formed formula that can be inferred from the axioms is satisfied by every model of the logical system. Conversely, a logic system is (semantically) complete if each well-formed formula that is satisfied by every model of the logical system can be inferred from the axioms. An example of a logical system is
Peano arithmetic In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...
. The standard model of arithmetic sets the domain of discourse to be the nonnegative integers and gives the symbols their usual meaning. There are also non-standard models of arithmetic.


History

Early logic systems includes Indian logic of Pāṇini, syllogistic logic of Aristotle, propositional logic of Stoicism, and Chinese logic of Gongsun Long (c. 325–250 BCE) . In more recent times, contributors include
George Boole George Boole (; 2 November 1815 – 8 December 1864) was a largely self-taught English mathematician, philosopher, and logician, most of whose short career was spent as the first professor of mathematics at Queen's College, Cork in ...
, Augustus De Morgan, and
Gottlob Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic ph ...
.
Mathematical logic Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal ...
was developed in 19th century
Europe Europe is a large peninsula conventionally considered a continent in its own right because of its great physical size and the weight of its history and traditions. Europe is also considered a subcontinent of Eurasia and it is located enti ...
.


Formalism


Hilbert's program

David Hilbert instigated a formalist movement that was eventually tempered by Gödel's incompleteness theorems.


QED manifesto

The QED manifesto represented a subsequent, as yet unsuccessful, effort at formalization of known mathematics.


Examples

Examples of formal systems include: * Lambda calculus * Predicate calculus *
Propositional calculus Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations ...


Variants

The following systems are variations of formal systems.


Proof system

Formal proofs are sequences of well-formed formulas (or wff for short). For a wff to qualify as part of a proof, it might either be an
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
or be the product of applying an inference rule on previous wffs in the proof sequence. The last wff in the sequence is recognized as a
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of ...
. The point of view that generating formal proofs is all there is to mathematics is often called '' formalism''. David Hilbert founded metamathematics as a discipline for discussing formal systems. Any language that one uses to talk about a formal system is called a '' metalanguage''. The metalanguage may be a natural language, or it may be partially formalized itself, but it is generally less completely formalized than the formal language component of the formal system under examination, which is then called the ''object language'', that is, the object of the discussion in question. Once a formal system is given, one can define the set of theorems which can be proved inside the formal system. This set consists of all wffs for which there is a proof. Thus all axioms are considered theorems. Unlike the grammar for wffs, there is no guarantee that there will be a decision procedure for deciding whether a given wff is a theorem or not. The notion of ''theorem'' just defined should not be confused with ''theorems about the formal system'', which, in order to avoid confusion, are usually called metatheorems.


See also

* Formal method * Formal science * Rewriting system * Substitution instance * Theory (mathematical logic)


References


Further reading

*
Raymond M. Smullyan Raymond Merrill Smullyan (; May 25, 1919 – February 6, 2017) was an American mathematician, magician, concert pianist, logician, Taoism, Taoist, and philosopher. Born in Far Rockaway, Queens, Far Rockaway, New York, his first career was stage ...
, 1961. ''Theory of Formal Systems: Annals of Mathematics Studies'', Princeton University Press (April 1, 1961) 156 pages * Stephen Cole Kleene, 1967. ''Mathematical Logic'' Reprinted by Dover, 2002. * Douglas Hofstadter, 1979. '' Gödel, Escher, Bach: An Eternal Golden Braid'' . 777 pages.


External links

* * Encyclopædia Britannica
Formal system
definition, 2007.

Some quotes from John Haugeland's `Artificial Intelligence: The Very Idea' (1985), pp. 48–64. * Peter Suber

, 1997. {{DEFAULTSORT:Formal System Metalogic Syntax (logic) System 1st-millennium BC introductions 4th century BC in India