HOME

TheInfoList



OR:

Cerebral achromatopsia is a type of color-blindness caused by damage to the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting o ...
of the brain, rather than abnormalities in the cells of the eye's
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
. It is often confused with congenital
achromatopsia Achromatopsia, also known as Rod monochromacy, is a medical syndrome that exhibits symptoms relating to five conditions, most notably monochromacy. Historically, the name referred to monochromacy in general, but now typically refers only to an a ...
but underlying physiological deficits of the disorders are completely distinct. A similar, but distinct, deficit called color agnosia exists in which a person has intact color perception (as measured by a matching task) but has deficits in color recognition, such as knowing which color they are looking at.


Signs and symptoms

Patients with cerebral achromatopsia deny having any experience of color when asked and fail standard clinical assessments like the Farnsworth-Munsell 100-hue test (a test of color ordering with no naming requirements). Patients may often not notice their loss of color vision and merely describe the world they see as being "drab". Most describe seeing the world in "shades of gray". This observation notes a key difference between cerebral and congenital achromatopsia, as those born with achromatopsia have never had an experience of color or gray.


Pathophysiology

Cerebral achromatopsia differs from other forms of color blindness in subtle but important ways. It is a consequence of cortical damage that arises through
ischemia Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems w ...
or
infarction Infarction is tissue death ( necrosis) due to inadequate blood supply to the affected area. It may be caused by artery blockages, rupture, mechanical compression, or vasoconstriction. The resulting lesion is referred to as an infarct (from th ...
of a specific area in the ventral occipitotemporal cortex of humans. This damage is almost always the result of injury or illness.


Classification

A 2005 study examined 92 case studies since 1970 in which cerebral lesions affected color vision. The severity and size of the visual field affected in cerebral achromatopsiacs vary from patient to patient.


Bilateral and hemifield

The majority of cases in the 2005 study were the result of bilateral lesions in the ventral occipital cortex. It is unknown whether this was the result of bilateral lesions being more likely to produce color-loss symptoms, or if it was a sampling effect of patients with more severe brain trauma more often being admitted for treatment. In many of the cases examined, patients reported only partial loss of color vision. The locations of color vision loss can be restricted to one hemisphere or one quarter of the visual field. The term "hemiachromatopsia" has been used to denote patients who experience loss of color in only one hemisphere of the visual field. However, as applied to achromatopia resulting from brain trauma, the term is incomplete in characterizing the often-complex nature of the vision loss.


Transient

In still rarer cases, temporary ischemia of the associated ventral occipital cortex can result in transient achromatopsia. The condition has thus far been characterized only in stroke patients and provides further support for a color processing area. In one case, a 78-year-old stroke victim had lost the ability to identify color, but was unaware of his deficit until doctors performed color discretion tests. Even when presented with this information, the patient believed he had retained his ability to perceive color even though the world around him appeared grey. He attributed this achromatism to "poor lighting" and it took several weeks for the patient to fully appreciate the extent of his disability. In addition, the characteristic comorbidity of prosopagnosia was present. After two months and frequent sessions with doctors, tests indicated his color had fully returned. The ischemia caused by lesions on the posterior cerebral arteries had subsided and follow up MRI scans indicated that blood flow had once again returned to the ventral occipital cortex.


Co-occurrence with other deficits

The most common disorder seen alongside cerebral achromatopsia is
prosopagnosia Prosopagnosia (from Greek ''prósōpon'', meaning "face", and ''agnōsía'', meaning "non-knowledge"), also called face blindness, ("illChoisser had even begun tpopularizea name for the condition: face blindness.") is a cognitive disorder of f ...
, the inability to recognize or recall faces. In some studies, the comorbidity is seen as high as 72%. This significance has not been overlooked and is a subject of ongoing research. Cerebral achromatopes often have poor spatial acuity.


Diagnosis

Cerebral achromatopsia can be diagnosed easily with
color vision tests A color vision test is used for measuring color vision against a standard. These tests are most often used to diagnose color vision deficiencies (''color blindness''), though several of the standards are designed to categorize normal color vision ...
, commonly the Farnsworth-Munsell 100 hue test or the Ishihara plate test. Testing and diagnosis for cerebral achromatopsia is often incomplete and misdiagnosed in doctor’s offices.Briefing from 2008 Achromatopsia Conference by James Fulton Remarkably, almost 50% of tested patients diagnosed with cerebral achromatopsia are able to perform normally on the color-naming test. However, these results are somewhat in question because of the sources from which many of these reports come. Only 29% of cerebral achromatopsia patients successfully pass the Ishihara plate test, which is a more accepted and more standardized test for color blindness.


Difference from congenital achromatopsia

The most apparent distinguishing characteristic between congenital achromatopsia and cerebral achromatopsia is the sudden onset of color vision loss following a severe head injury or damage to the occipital lobe following a stroke or similar ischemic event. Non-invasive imaging techniques can be the most helpful in determining whether the area of damage following a traumatic event is an correlated with color-vision processing. Simple diagnostic tools can also be used to determine whether a patient is a likely candidate for further testing, as advancing imaging procedures can often prove expensive and unnecessary. Co-morbid factors can be valuable indicators of the likelihood of cerebral achromatopsia. One disorder often seen alongside cerebral achromatopsia is prosopagnosia, the inability to recall or recognize faces. The correlation is still the subject of ongoing research, but the most telltale clue in this association is the close proximity of brain lesions seen in prosopagnosics and cerebral achromatopsiacs without prosopagnosia. Figure 1 illustrates overlap of brain lesions compiled from numerous case reports of both disorders. A common area of damage associated with both disorders can be seen in the right occipital lobe.


Treatment

No current treatment is known for the disorder.


History

The number of reported cases of cerebral achromatopsia are relatively few compared with other forms of color-vision loss. In addition, the severity of the color perception deficits along with other psychological effects vary between patients. A case of cerebral achromatopsia, acquired after a cortical lesion, was described by Dr. Verrey in 1888. but the evidence was dismissed by both Gordon Holmes and Salomon Henschen, two eminent neurologists who had identified the position and limits of the primary visual cortex. Verrey's description all but disappeared until a color center was identified in macaque monkey. and until a review of the literature showed the common location of the rare cases of cerebral acrhomatopsia


Current research

Based on the knowledge gained from cerebral achromatopsia case studies, current research is focusing on learning more about the cortical area involved in color processing. A recent study provided some of the first direct evidence of color-specific processing in the human ventral occipital cortex. A subject with a history of seizure activity was examined using fMRI and electrode implantation. Using the fMRI, researchers examined the areas of blood oxygenation in the occipital lobe as the subject viewed various color-specific stimuli. The result of the experiment was the identification of an area in the subject, slightly anterior to the lesioned area in cerebral achromatic patients, that responded to variance in color stimulation. The resolution of the MRI was a limiting factor in identifying areas corresponding to specific colors. The next portion of the study used an electrode implanted in the right hemisphere in the location identified by the fMRI scan as pertaining to color processing. It was found the electrical activity of the area increased when the subject was presented with blue stimuli. The next, and most significant finding of the study, was that when the electrode was used to present an electrical stimulus in the subject’s brain, the subject reported the perception of the color blue. Such a result is consistent with other reports of electrical stimulation in visual field maps eliciting perception of phosphines in subjects’ visual field. The color stimulus presented is not the only factor in determining the involvement of the ventral occipital cortex in color processing. The amount of attention and the type of object also affect the activation of the ventral occipital cortex. It has been noted that this area of the occipital lobe may not be a processing center but rather a pathway that is a critical intersection of several cortical areas involved in color perception.


Society and culture

The disorder is often presented as evidence of our incomplete knowledge of color processing. Color vision research is a well-studied field of modern neuroscience and the underlying anatomical processing in the retina have been well categorized. The presence of another factor in the perception of color by humans illustrates the need for more research.


The case of the colorblind painter

The most famous instance of cerebral achromatopsia is that of "Jonathan I." immortalized in a case study by
Oliver Sacks Oliver Wolf Sacks, (9 July 1933 – 30 August 2015) was a British neurologist, naturalist, historian of science, and writer. Born in Britain, Sacks received his medical degree in 1958 from The Queen's College, Oxford, before moving to the Uni ...
and Robert Wasserman, and published as "The Case of the Colorblind Painter".Sacks, Oliver. "The Case of the Colorblind Painter". ''An Anthropologist on Mars''. New York: Random House, 1995. 3-41. The essay tracks Johnathan I.'s experience with cerebral achromatopsia from the point where an injury to his occipital lobe leaves him without the ability to perceive color, through his subsequent struggles to adapt to a black, white and gray world, and finally to his acceptance and even gratitude for his condition. Especially pertinent is the analysis of how cerebral achromatopsia affects his practice as a painter and artist. Descriptions of cerebral achromatopsia's effects on his psychological health and visual perception are especially striking. For instance, in recounting Mr. I.'s descriptions of flesh and foods, the authors write:


See also

*
Achromatopsia Achromatopsia, also known as Rod monochromacy, is a medical syndrome that exhibits symptoms relating to five conditions, most notably monochromacy. Historically, the name referred to monochromacy in general, but now typically refers only to an a ...
*
Cortical blindness Cortical blindness is the total or partial loss of vision in a normal-appearing eye caused by damage to the brain's occipital cortex. Cortical blindness can be acquired or congenital, and may also be transient in certain instances. Acquired cortic ...
*
Color blindness Color blindness or color vision deficiency (CVD) is the decreased ability to see color or differences in color. It can impair tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights. Color blindness may make some aca ...
*
Ishihara color test The Ishihara test is a color vision test for detection of red-green color deficiencies. It was named after its designer, Shinobu Ishihara, a professor at the University of Tokyo, who first published his tests in 1917.S. Ishihara, Tests for col ...


References

{{Medicine Color vision Visual disturbances and blindness Neuropsychology Agnosia Stroke