HOME

TheInfoList



OR:

Acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
s in
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
(SR) follow, as in
Newtonian Mechanics Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motio ...
, by differentiation of
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
with respect to
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
. Because of the
Lorentz transformation In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant velo ...
and
time dilation In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them ( special relativistic "kinetic" time dilation) or to a difference in gravitational ...
, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat
Minkowski spacetime In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the ...
remains valid in the presence of accelerations, because
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
(GR) is only required when there is
curvature of spacetime General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. G ...
caused by the
energy–momentum tensor Energy–momentum may refer to: * Four-momentum * Stress–energy tensor * Energy–momentum relation {{dab ...
(which is mainly determined by
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
). However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s. One can derive transformation formulas for ordinary accelerations in three spatial dimensions (three-acceleration or coordinate acceleration) as measured in an external
inertial frame of reference In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
, as well as for the special case of proper acceleration measured by a comoving
accelerometer An accelerometer is a tool that measures proper acceleration. Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame; this is different from coordinate acceleration, which is acce ...
. Another useful formalism is
four-acceleration In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has ...
, as its components can be connected in different inertial frames by a Lorentz transformation. Also
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (V ...
can be formulated which connect acceleration and
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are
hyperbolic motion In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geom ...
for constant longitudinal proper acceleration or uniform
circular motion In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rot ...
. Eventually, it is also possible to describe these phenomena in accelerated frames in the context of special relativity, see Proper reference frame (flat spacetime). In such frames, effects arise which are analogous to homogeneous
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational pheno ...
s, which have some formal similarities to the real, inhomogeneous gravitational fields of curved spacetime in general relativity. In the case of hyperbolic motion one can use
Rindler coordinates In relativistic physics, the coordinates of a ''hyperbolically accelerated reference frame'' constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle ...
, in the case of uniform circular motion one can use
Born coordinates In relativistic physics, the Born coordinate chart is a coordinate chart for (part of) Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of observers who ride on a ring or disk r ...
. Concerning the historical development, relativistic equations containing accelerations can already be found in the early years of relativity, as summarized in early textbooks by
Max von Laue Max Theodor Felix von Laue (; 9 October 1879 – 24 April 1960) was a German physicist who received the Nobel Prize in Physics in 1914 for his discovery of the diffraction of X-rays by crystals. In addition to his scientific endeavors with con ...
(1911, 1921)von Laue (1921) or
Wolfgang Pauli Wolfgang Ernst Pauli (; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics ...
(1921).Pauli (1921) For instance, equations of motion and acceleration transformations were developed in the papers of Hendrik Antoon Lorentz (1899, 1904),
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "Th ...
(1905),
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
(1905),
Max Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
(1906), and four-acceleration, proper acceleration, hyperbolic motion, accelerating reference frames,
Born rigidity Born rigidity is a concept in special relativity. It is one answer to the question of what, in special relativity, corresponds to the rigid body of non-relativistic classical mechanics. The concept was introduced by Max Born (1909),Born (1909b) ...
, have been analyzed by Einstein (1907),
Hermann Minkowski Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number t ...
(1907, 1908),
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a ...
(1909),
Gustav Herglotz Gustav Herglotz (2 February 1881 – 22 March 1953) was a German Bohemian physicist best known for his works on the theory of relativity and seismology. Biography Gustav Ferdinand Joseph Wenzel Herglotz was born in Volary num. 28 to a public ...
(1909),
Arnold Sommerfeld Arnold Johannes Wilhelm Sommerfeld, (; 5 December 1868 – 26 April 1951) was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored many students for the new era of theoretic ...
(1910), von Laue (1911),
Friedrich Kottler Friedrich Kottler (December 10, 1886 – May 11, 1965) was an Austrian theoretical physicist. He was a Privatdozent before he got a professorship in 1923 at the University of Vienna. Life In 1938, after the Anschluss, he lost his profes ...
(1912, 1914), see section on history.


Three-acceleration

In accordance with both Newtonian mechanics and SR, three-acceleration or coordinate acceleration \mathbf=\left(a_,\ a_,\ a_\right) is the first derivative of velocity \mathbf=\left(u_,\ u_,\ u_\right) with respect to coordinate time or the second derivative of the location \mathbf=\left(x,\ y,\ z\right) with respect to coordinate time: :\mathbf=\frac=\frac. However, the theories sharply differ in their predictions in terms of the relation between three-accelerations measured in different inertial frames. In Newtonian mechanics, time is absolute by t'=t in accordance with the
Galilean transformation In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotat ...
, therefore the three-acceleration derived from it is equal too in all inertial frames: :\mathbf=\mathbf'. On the contrary in SR, both \mathbf and t depend on the Lorentz transformation, therefore also three-acceleration \mathbf and its components vary in different inertial frames. When the relative velocity between the frames is directed in the x-direction by v=v_ with \gamma_=1/\sqrt as
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
, the Lorentz transformation has the form or for arbitrary velocities \mathbf=\left(v_,\ v_,\ v_\right) of magnitude , \mathbf, =v: In order to find out the transformation of three-acceleration, one has to differentiate the spatial coordinates \mathbf and \mathbf' of the Lorentz transformation with respect to t and t', from which the transformation of three-velocity (also called
velocity-addition formula In relativistic physics, a velocity-addition formula is a three-dimensional equation that relates the velocities of objects in different reference frames. Such formulas apply to successive Lorentz transformations, so they also relate different fra ...
) between \mathbf and \mathbf' follows, and eventually by another differentiation with respect to t and t' the transformation of three-acceleration between \mathbf and \mathbf' follows. Starting from (), this procedure gives the transformation where the accelerations are parallel (x-direction) or perpendicular (y-, z-direction) to the velocity: or starting from () this procedure gives the result for the general case of arbitrary directions of velocities and accelerations: This means, if there are two inertial frames S and S' with relative velocity \mathbf, then in S the acceleration \mathbf of an object with momentary velocity \mathbf is measured, while in S' the same object has an acceleration \mathbf' and has the momentary velocity \mathbf'. As with the velocity addition formulas, also these acceleration transformations guarantee that the resultant speed of the accelerated object can never reach or surpass the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
.


Four-acceleration

If
four-vector In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
s are used instead of three-vectors, namely \mathbf as four-position and \mathbf as four-velocity, then the four-acceleration \mathbf=\left(A_,\ A_,\ A_,\ A_\right)=\left(A_,\ \mathbf_\right) of an object is obtained by differentiation with respect to
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
\mathbf instead of coordinate time:Pauli (1921), p. 627Freund (2008), pp. 267-268 where \mathbf is the object's three-acceleration and \mathbf its momentary three-velocity of magnitude , \mathbf, =u with the corresponding Lorentz factor \gamma=1/\sqrt. If only the spatial part is considered, and when the velocity is directed in the x-direction by u=u_ and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered, the expression is reduced to:Ferraro (2007), p. 178 :\mathbf_=\mathbf\left(\gamma^,\ \gamma^,\ \gamma^\right) Unlike the three-acceleration previously discussed, it is not necessary to derive a new transformation for four-acceleration, because as with all four-vectors, the components of \mathbf and \mathbf' in two inertial frames with relative speed v are connected by a Lorentz transformation analogous to (, ). Another property of four-vectors is the invariance of the
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
\mathbf^=-A_^+\mathbf_^ or its magnitude , \mathbf, =\sqrt, which gives in this case:Kopeikin & Efroimsky & Kaplan (2011), p. 137


Proper acceleration

In infinitesimal small durations there is always one inertial frame, which momentarily has the same velocity as the accelerated body, and in which the Lorentz transformation holds. The corresponding three-acceleration \mathbf^=\left(a_^,\ a_^,\ a_^\right) in these frames can be directly measured by an accelerometer, and is called proper accelerationRindler (1977), pp. 49-50 or rest acceleration.von Laue (1921), pp. 88-89 The relation of \mathbf^ in a momentary inertial frame S' and \mathbf measured in an external inertial frame S follows from (, ) with \mathbf'=\mathbf^, \mathbf'=0, \mathbf=\mathbf and \gamma=\gamma_. So in terms of (), when the velocity is directed in the x-direction by u=u_=v=v_ and when only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered, it follows: Generalized by () for arbitrary directions of \mathbf of magnitude , \mathbf, =u: :\begin\mathbf^ & =\gamma^\left mathbf+\frac\left(\gamma-1\right)\right\ \mathbf & =\frac\left mathbf^-\frac\left(1-\frac\right)\right\end There is also a close relationship to the magnitude of four-acceleration: As it is invariant, it can be determined in the momentary inertial frame S', in which \mathbf_^=\mathbf^ and by dt'/d\tau=1 it follows d^t'/d\tau^=A_^=0:Rindler (1977), p. 67 Thus the magnitude of four-acceleration corresponds to the magnitude of proper acceleration. By combining this with (), an alternative method for the determination of the connection between \mathbf^ in S' and \mathbf in S is given, namely :, \mathbf^, =, \mathbf, =\sqrt from which () follows again when the velocity is directed in the x-direction by u=u_ and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered.


Acceleration and force

Assuming constant mass m, the
four-force In the special theory of relativity, four-force is a four-vector that replaces the classical force. In special relativity The four-force is defined as the rate of change in the four-momentum of a particle with respect to the particle's proper ...
\mathbf as a function of three-force \mathbf is related to four-acceleration () by \mathbf=m\mathbf, thus:Freund (2008), p. 276 The relation between three-force and three-acceleration for arbitrary directions of the velocity is thusRindler (1977), pp. 89-90Sexl & Schmidt (1979), solution of example 16.2, p. 198 When the velocity is directed in the x-direction by u=u_ and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered Therefore, the Newtonian definition of mass as the ratio of three-force and three-acceleration is disadvantageous in SR, because such a mass would depend both on velocity and direction. Consequently, the following mass definitions used in older textbooks are not used anymore:von Laue (1921), p. 210 :m_=\frac=m\gamma^ as "longitudinal mass", :m_=\frac=\frac=m\gamma as "transverse mass". The relation () between three-acceleration and three-force can also be obtained from the equation of motionTolman (1917), pp. 73-74Møller (1955), pp. 74-75 where \mathbf is the three-momentum. The corresponding transformation of three-force between \mathbf in S and \mathbf' in S' (when the relative velocity between the frames is directed in the x-direction by v=v_ and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered) follows by substitution of the relevant transformation formulas for \mathbf, \mathbf, m\gamma, d(m\gamma)/dt, or from the Lorentz transformed components of four-force, with the result: Or generalized for arbitrary directions of \mathbf, as well as \mathbf with magnitude , \mathbf, =v:


Proper acceleration and proper force

The force \mathbf^ in a momentary inertial frame measured by a comoving spring balance can be called proper force.Shadowitz (1968), p. 101Pfeffer & Nir (2012), p. 115, "In the special case in which the particle is momentarily at rest relative to the observer S, the force he measures will be the ''proper force''". It follows from (, ) by setting \mathbf'=\mathbf^ and \mathbf'=0 as well as \mathbf=\mathbf and \gamma=\gamma_. Thus by () where only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity u=u_=v=v_ are considered: Generalized by () for arbitrary directions of \mathbf of magnitude , \mathbf, =u:Møller (1955), p. 74 :\begin\mathbf^ & =\mathbf\gamma-\frac(\gamma-1)\\ \mathbf & =\frac+\frac\left(1-\frac\right) \end Since in momentary inertial frames one has four-force \mathbf=\left(0,\,\mathbf^\right) and four-acceleration \mathbf=\left(0,\,\mathbf^\right), equation () produces the Newtonian relation \mathbf^=m\mathbf^, therefore (, , ) can be summarized By that, the apparent contradiction in the historical definitions of transverse mass m_ can be explained.Mathpages (see external links), "Transverse Mass in Einstein's Electrodynamics", eq. 2,3 Einstein (1905) described the relation between three-acceleration and proper force :m_=\frac=\frac=m\gamma^, while Lorentz (1899, 1904) and Planck (1906) described the relation between three-acceleration and three-force :m_=\frac=\frac=m\gamma.


Curved world lines

By integration of the equations of motion one obtains the curved world lines of accelerated bodies corresponding to a sequence of momentary inertial frames (here, the expression "curved" is related to the form of the worldlines in Minkowski diagrams, which should not be confused with "curved" spacetime of general relativity). In connection with this, the so-called clock hypothesis of clock postulate has to be considered: The proper time of comoving clocks is independent of acceleration, that is, the time dilation of these clocks as seen in an external inertial frame only depends on its relative velocity with respect to that frame. Two simple cases of curved world lines are now provided by integration of equation () for proper acceleration: a)
Hyperbolic motion In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geom ...
: The constant, longitudinal proper acceleration \alpha=a_^=a_\gamma^ by () leads to the world lineFraundorf (2012), section IV-B The worldline corresponds to the
hyperbolic equation In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n-1 derivatives. More precisely, the Cauchy problem can be ...
c^/\alpha^=\left(x+c^/\alpha\right)^-c^t^, from which the name hyperbolic motion is derived. These equations are often used for the calculation of various scenarios of the
twin paradox In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. T ...
or
Bell's spaceship paradox Bell's spaceship paradox is a thought experiment in special relativity. It was designed by E. Dewan and M. Beran in 1959 and became more widely known when J. S. Bell included a modified version.J. S. Bell: ''How to teach special relativity'', Prog ...
, or in relation to
space travel using constant acceleration Space travel under constant acceleration is a hypothetical method of space travel that involves the use of a propulsion system that generates a constant acceleration rather than the short, impulsive thrusts produced by traditional chemical rock ...
. b) The constant, transverse proper acceleration a_^=a_\gamma^ by () can be seen as a centripetal acceleration, leading to the worldline of a body in uniform rotation where v=r\Omega_ is the tangential speed, r is the orbital radius, \Omega_ is the
angular velocity In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an object ...
as a function of coordinate time, and \Omega=\gamma\Omega_ as the proper angular velocity. A classification of curved worldlines can be obtained by using the
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and mult ...
of triple curves, which can be expressed by spacetime Frenet-Serret formulas. In particular, it can be shown that hyperbolic motion and uniform circular motion are special cases of motions having constant
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the can ...
s and torsions, satisfying the condition of
Born rigidity Born rigidity is a concept in special relativity. It is one answer to the question of what, in special relativity, corresponds to the rigid body of non-relativistic classical mechanics. The concept was introduced by Max Born (1909),Born (1909b) ...
. A body is called Born rigid if the spacetime distance between its infinitesimally separated worldlines or points remains constant during acceleration.


Accelerated reference frames

Instead of inertial frames, these accelerated motions and curved worldlines can also be described using accelerated or curvilinear coordinates. The proper reference frame established that way is closely related to
Fermi coordinates In the mathematical theory of Riemannian geometry, there are two uses of the term Fermi coordinates. In one use they are local coordinates that are adapted to a geodesic. In a second, more general one, they are local coordinates that are adapted to ...
.Gourgoulhon (2013), entire book For instance, the coordinates for an hyperbolically accelerated reference frame are sometimes called
Rindler coordinates In relativistic physics, the coordinates of a ''hyperbolically accelerated reference frame'' constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle ...
, or those of a uniformly rotating reference frame are called rotating cylindrical coordinates (or sometimes
Born coordinates In relativistic physics, the Born coordinate chart is a coordinate chart for (part of) Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of observers who ride on a ring or disk r ...
). In terms of the
equivalence principle In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (su ...
, the effects arising in these accelerated frames are analogous to effects in a homogeneous, fictitious gravitational field. In this way it can be seen, that the employment of accelerating frames in SR produces important mathematical relations, which (when further developed) play a fundamental role in the description of real, inhomogeneous gravitational fields in terms of curved spacetime in general relativity.


History

For further information see von Laue, Pauli, Miller, Zahar,Zahar (1989) Gourgoulhon, and the historical sources in history of special relativity. ;1899:
Hendrik Lorentz Hendrik Antoon Lorentz (; 18 July 1853 – 4 February 1928) was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect. He also derived the Lorent ...
derived the correct (up to a certain factor \epsilon) relations for accelerations, forces and masses between a resting electrostatic systems of particles S_ (in a stationary aether), and a system S emerging from it by adding a translation, with k as the Lorentz factor: ::\frac, \frac, \frac for \mathbf/\mathbf^ by (); ::\frac, \frac, \frac for \mathbf/\mathbf^ by (); ::\frac, \frac, \frac for \mathbf/(m\mathbf), thus longitudinal and transverse mass by (); :Lorentz explained that he has no means of determining the value of \epsilon. If he had set \epsilon=1, his expressions would have assumed the exact relativistic form.

;1904: Lorentz derived the previous relations in a more detailed way, namely with respect to the properties of particles resting in the system \Sigma' and the moving system \Sigma, with the new auxiliary variable l equal to 1/\epsilon compared to the one in 1899, thus: ::\mathfrak(\Sigma)=\left(l^,\ \frac,\ \frac\right)\mathfrak(\Sigma') for \mathbf as a function of \mathbf^ by (); ::m\mathfrak(\Sigma)=\left(l^,\ \frac,\ \frac\right)m\mathfrak(\Sigma') for m\mathbf as a function of m\mathbf^ by (); ::\mathfrak(\Sigma)=\left(\frac,\ \frac,\ \frac\right)\mathfrak(\Sigma') for \mathbf as a function of \mathbf^ by (); ::m(\Sigma)=\left(k^l,\ kl,\ kl\right)m(\Sigma') for longitudinal and transverse mass as a function of the rest mass by (, ). :This time, Lorentz could show that l=1, by which his formulas assume the exact relativistic form. He also formulated the equation of motion :: with :which corresponds to () with \mathbf=\frac=\frac, with l=1, \mathfrak=\mathbf, \mathfrak=\mathbf, \mathfrak=\mathbf, k=\gamma, and e^/(6\pi c^R)=m as electromagnetic rest mass. Furthermore, he argued, that these formulas should not only hold for forces and masses of electrically charged particles, but for other processes as well so that the earth's motion through the aether remains undetectable.

;1905:
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "Th ...
introduced the transformation of three-force (): ::X_^=\frac\frac\left(X_+\epsilon\Sigma X_\xi\right),\quad Y_^=\frac\frac,\quad Z_^=\frac\frac :with \frac=\frac(1+\epsilon\xi), and k as the Lorentz factor, \rho the charge density. Or in modern notation: \epsilon=v, \xi=u_, \left(X_,\ Y_,\ Z_\right)=\mathbf, and \Sigma X_\xi=\mathbf\cdot\mathbf. As Lorentz, he set l=1.

;1905:
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
derived the equations of motions on the basis of his special theory of relativity, which represent the relation between equally valid inertial frames without the action of a mechanical aether. Einstein concluded, that in a momentary inertial frame k the equations of motion retain their Newtonian form: ::\mu\frac=\epsilon X',\quad\mu\frac=\epsilon Y',\quad\mu\frac=\epsilon Z'. :This corresponds to \mathbf^=m\mathbf^, because \mu=m and \left(\frac,\ \frac,\ \frac\right)=\mathbf^ and \left(\epsilon X',\ \epsilon Y',\ \epsilon Z'\right)=\mathbf^. By transformation into a relatively moving system K he obtained the equations for the electrical and magnetic components observed in that frame: ::\frac=\frac\fracX,\quad\frac=\frac\frac\left(Y-\fracN\right),\quad\frac=\frac\frac\left(Z+\fracM\right). :This corresponds to () with \mathbf=\frac\left(\frac,\ \frac,\ \frac\right), because \mu=m and \left(\frac,\ \frac,\ \frac\right)=\mathbf and \left epsilon X,\ \epsilon\left(Y-\fracN\right),\ \epsilon\left(Z+\fracM\right)\right\mathbf and \beta=\gamma. Consequently, Einstein determined the longitudinal and transverse mass, even though he related it to the force \left(\epsilon X',\ \epsilon Y',\ \epsilon Z'\right)=\mathbf^ in the momentary rest frame measured by a comoving spring balance, and to the three-acceleration \mathbf in system K: ::\begin \begin\mu\beta^\frac & =\epsilon X=\epsilon X'\\ \mu\beta^\frac & =\epsilon\beta\left(Y-\fracN\right)=\epsilon Y'\\ \mu\beta^\frac & =\epsilon\beta\left(Z+\fracM\right)=\epsilon Z' \end & \begin\frac & \ \text\\ \\ \frac & \ \text \end \end :This corresponds to () with m\mathbf\left(\gamma^,\ \gamma^,\ \gamma^\right)=\mathbf\left(1,\ \gamma,\ \gamma\right)=\mathbf^.

;1905: Poincaré introduces the transformation of three-acceleration (): ::\frac=\frac\frac,\quad\frac=\frac\frac-\frac\frac,\quad\frac=\frac\frac-\frac\frac :where \left(\xi,\ \eta,\ \zeta\right)=\mathbf as well as k=\gamma and \epsilon=v and \mu=1+\xi\epsilon=1+u_v. :Furthermore, he introduced the four-force in the form: ::k_X_,\quad k_Y_,\quad k_Z_,\quad k_T_ :where k_=\gamma_ and \left(X_,\ Y_,\ Z_\right)=\mathbf and T_=\Sigma X_\xi=\mathbf\cdot\mathbf.

;1906:
Max Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
derived the equation of motion ::\frac=e\mathfrak_-\frac\left(\dot\mathfrak_+\dot\mathfrak_+\dot\mathfrak_\right)+\frac\left(\dot\mathfrak_-\dot\mathfrak_\right)\ \text :with ::e\left(\dot\mathfrak_+\dot\mathfrak_+\dot\mathfrak_\right)=\frac and e\mathfrak_+\frac\left(\dot\mathfrak_-\dot\mathfrak_\right)=X\ \text :and ::\frac\left\ =X\ \text :The equations correspond to () with ::\mathbf=\frac=\frac=m\gamma^\left(\frac\right)+m\gamma\mathbf, with X=f_ and q=v and \dot\ddot+\dot\ddot+\dot\ddot=\mathbf\cdot\mathbf, in agreement with those given by Lorentz (1904).

;1907: Einstein analyzed a uniformly accelerated reference frame and obtained formulas for coordinate dependent time dilation and speed of light, analogous to those given by Kottler-Møller-
Rindler coordinates In relativistic physics, the coordinates of a ''hyperbolically accelerated reference frame'' constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle ...
.

;1907:
Hermann Minkowski Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number t ...
defined the relation between the four-force (which he called the moving force) and the four acceleration ::m\frac\frac=R_,\quad m\frac\frac=R_,\quad m\frac\frac=R_,\quad m\frac\frac=R_ :corresponding to m\mathbf=\mathbf.

;1908: Minkowski denotes the second derivative x,y,z,t with respect to proper time as "acceleration vector" (four-acceleration). He showed, that its magnitude at an arbitrary point P of the worldline is c^/\varrho, where \varrho is the magnitude of a vector directed from the center of the corresponding "curvature hyperbola" (german: Krümmungshyperbel) to P.

;1909:
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a ...
denotes the motion with constant magnitude of Minkowski's acceleration vector as "hyperbolic motion" (german: Hyperbelbewegung), in the course of his study of rigidly accelerated motion. He set p=dx/d\tau (now called proper velocity) and q=-dt/d\tau=\sqrt as Lorentz factor and \tau as proper time, with the transformation equations ::x=-q\xi,\quad y=\eta,\quad z=\zeta,\quad t=\frac\xi. :which corresponds to () with \xi=c^/\alpha and p=c\sinh(\alpha\tau/c). Eliminating p Born derived the hyperbolic equation x^-c^t^=\xi^, and defined the magnitude of acceleration as b=c^/\xi. He also noticed that his transformation can be used to transform into a "hyperbolically accelerated reference system" (german: hyperbolisch beschleunigtes Bezugsystem).

;1909:
Gustav Herglotz Gustav Herglotz (2 February 1881 – 22 March 1953) was a German Bohemian physicist best known for his works on the theory of relativity and seismology. Biography Gustav Ferdinand Joseph Wenzel Herglotz was born in Volary num. 28 to a public ...
extends Born's investigation to all possible cases of rigidly accelerated motion, including uniform rotation.

;1910:
Arnold Sommerfeld Arnold Johannes Wilhelm Sommerfeld, (; 5 December 1868 – 26 April 1951) was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored many students for the new era of theoretic ...
brought Born's formulas for hyperbolic motion in a more concise form with l=ict as the imaginary time variable and \varphi as an imaginary angle: ::x=r\cos\varphi,\quad y=y',\quad z=z',\quad l=r\sin\varphi

:He noted that when r,y,z are variable and \varphi is constant, they describe the worldline of a charged body in hyperbolic motion. But if r,y,z are constant and \varphi is variable, they denote the transformation into its rest frame. ;1911: Sommerfeld explicitly used the expression "proper acceleration" (german: Eigenbeschleunigung) for the quantity \dot_ in \dot=\dot_\left(1-\beta^\right)^, which corresponds to (), as the acceleration in the momentary inertial frame.

;1911: Herglotz explicitly used the expression "rest acceleration" (german: Ruhbeschleunigung) instead of proper acceleration. He wrote it in the form \gamma_^=\beta^\gamma_ and \gamma_^=\beta^\gamma_ which corresponds to (), where \beta is the Lorentz factor and \gamma_^ or \gamma_^ are the longitudinal and transverse components of rest acceleration.

;1911:
Max von Laue Max Theodor Felix von Laue (; 9 October 1879 – 24 April 1960) was a German physicist who received the Nobel Prize in Physics in 1914 for his discovery of the diffraction of X-rays by crystals. In addition to his scientific endeavors with con ...
derived in the first edition of his monograph "Das Relativitätsprinzip" the transformation for three-acceleration by differentiation of the velocity addition ::\begin\mathfrak_ & =\left(\frac\right)^\mathfrak_^, & \mathfrak_ & =\left(\frac\right)^\left(\mathfrak_^-\frac\right),\end :equivalent to () as well as to Poincaré (1905/6). From that he derived the transformation of rest acceleration (equivalent to ), and eventually the formulas for hyperbolic motion which corresponds to (): ::\pm\mathfrak_=\pm\frac=\frac,\quad\pm\left(x-x_\right)=\frac\sqrt, :thus ::x^-c^t^=x^-u^=c^/b^,\quad y=\eta,\quad z=\zeta, :and the transformation into a hyperbolic reference system with imaginary angle \varphi: ::\begin \beginX & =R\cos\varphi\\ L & =R\sin\varphi \end & \beginR^ & =X^+L^\\ \tan\varphi & =\frac \end \end. :He also wrote the transformation of three-force as ::\begin\mathfrak_ & =\frac, & \mathfrak_ & =\mathfrak_^\frac, & \mathfrak_ & =\mathfrak_^\frac,\end

:equivalent to () as well as to Poincaré (1905). ;1912–1914:
Friedrich Kottler Friedrich Kottler (December 10, 1886 – May 11, 1965) was an Austrian theoretical physicist. He was a Privatdozent before he got a professorship in 1923 at the University of Vienna. Life In 1938, after the Anschluss, he lost his profes ...
obtained
general covariance In theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the ''form'' of physical laws under arbitrary differentiable coordinate transformations. The essential idea ...
of
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
, and used four-dimensional Frenet-Serret formulas to analyze the Born rigid motions given by Herglotz (1909). He also obtained the proper reference frames for hyperbolic motion and uniform circular motion.

;1913: von Laue replaced in the second edition of his book the transformation of three-acceleration by Minkowski's acceleration vector for which he coined the name "four-acceleration" (german: Viererbeschleunigung), defined by \dot=\frac with Y as four-velocity. He showed, that the magnitude of four-acceleration corresponds to the rest acceleration \dot^ by ::, \dot=\frac, \dot^, , :which corresponds to (). Subsequently, he derived the same formulas as in 1911 for the transformation of rest acceleration and hyperbolic motion, and the hyperbolic reference frame.


References


Bibliography

* * * * * * * *; First edition 1911, second expanded edition 1913, third expanded edition 1919. * * * * * * * :In English: * * * * * * * * *


Historical papers

; See also
English translation
; English translatio
On the relativity principle and the conclusions drawn from it
at Einstein paper project.
{{Cite journal, author=Sommerfeld, Arnold, year=1911, title=Über die Struktur der gamma-Strahlen, journal=Sitzungsberichte der Mathematematisch-physikalischen Klasse der K. B. Akademie der Wissenschaften zu München, issue=1, pages=1–60 , url=http://publikationen.badw.de/003395686


External links

* Mathpages

* Physics FAQ

Special relativity Acceleration