Energy–momentum Tensor
   HOME
*





Energy–momentum Tensor
Energy–momentum may refer to: *Four-momentum *Stress–energy tensor *Energy–momentum relation In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It i ...
{{dab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Four-momentum
In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy and three-momentum , where is the particle's three-velocity and the Lorentz factor, is p = \left(p^0 , p^1 , p^2 , p^3\right) = \left(\frac E c , p_x , p_y , p_z\right). The quantity of above is ordinary non-relativistic momentum of the particle and its rest mass. The four-momentum is useful in relativistic calculations because it is a Lorentz covariant vector. This means that it is easy to keep track of how it transforms under Lorentz transformations. The above definition applies under the coordinate convention that . Some authors use the convention , which yields a modified definition with . It is also possible to define covaria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stress–energy Tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity. Definition The stress–energy tensor involves the use of superscripted variables (''not'' exponents; see tensor index notation and Einstein summation notation). If Cartesian coordinates in SI units are used, then the components of the position four-vector are given by: , , , and , where ''t'' is time in seconds, and ''x'', ''y'', and ''z'' are distances in meters. The stress–energy tensor is defined as the tensor '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]