Zilog Z800
   HOME

TheInfoList



OR:

The Zilog Z800 was a
16-bit 16-bit microcomputers are microcomputers that use 16-bit microprocessors. A 16-bit register can store 216 different values. The range of integer values that can be stored in 16 bits depends on the integer representation used. With the two mos ...
microprocessor A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circu ...
designed by
Zilog Zilog, Inc. is an American manufacturer of microprocessors and 8-bit and 16-bit microcontrollers. It is also a supplier of application-specific embedded system-on-chip (SoC) products. Its most famous product is the Z80 series of 8-bit microp ...
and meant to be released in 1985. It was instruction compatible with their existing
Z80 The Z80 is an 8-bit microprocessor introduced by Zilog as the startup company's first product. The Z80 was conceived by Federico Faggin in late 1974 and developed by him and his 11 employees starting in early 1975. The first working samples were ...
, and differed primarily in having on-chip
cache Cache, caching, or caché may refer to: Places United States * Cache, Idaho, an unincorporated community * Cache, Illinois, an unincorporated community * Cache, Oklahoma, a city in Comanche County * Cache, Utah, Cache County, Utah * Cache County ...
and a
memory management unit A memory management unit (MMU), sometimes called paged memory management unit (PMMU), is a computer hardware unit having all memory references passed through itself, primarily performing the translation of virtual memory addresses to physical ad ...
(MMU) to provide a 16 MB address range. It also added a huge number of new more orthogonal instructions and addressing modes. Zilog essentially ignored the Z800 in favor of their 32-bit
Z80000 The Z80000 is Zilog's 32-bit processor, first released in 1986. It is essentially a 32-bit expansion of its 16-bit predecessor, the Zilog Z8000. It includes multiprocessing capability, a six-stage instruction pipeline, and a 256-byte cache. Its me ...
and the Z800 never entered mass production. After more than five years had elapsed since it was originally introduced, the effort was redubbed the
Z280 The Zilog Z280 is a 16-bit microprocessor, an enhancement of the Zilog Z80 architecture, introduced in July 1987. It is basically the Z800, renamed, with slight improvements such as being fabricated in CMOS. It was a commercial failure. Zilog ...
in 1986.EDN November 27, 1986, p133 An actual product, the Z280 would ship in 1987 with almost the same design as the Z800, but this time implemented in
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFE ...
. The Z800 contrasts with Zilog's first 16-bit effort, the
Zilog Z8000 The Z8000 ("''zee-'' or ''zed-eight-thousand''") is a 16-bit microprocessor introduced by Zilog in early 1979. The architecture was designed by Bernard Peuto while the logic and physical implementation was done by Masatoshi Shima, assisted by a ...
, in that the Z800 was intended to be Z80 compatible, while the Z8000 was only Z80-like and did not offer any direct compatibility.


Short description

There was no expansion of the
register Register or registration may refer to: Arts entertainment, and media Music * Register (music), the relative "height" or range of a note, melody, part, instrument, etc. * ''Register'', a 2017 album by Travis Miller * Registration (organ), th ...
set but the registers and instructions were significantly orthogonalized in order to make them more general-purpose and powerful. Many new 8-bit and 16-bit operations were added, and the HL, IX, and IY registers were upgraded from their rather limited possibilities as accumulators in the Z80 to more versatile accumulators. In addition to the register operands possible in the Z80, they could be used with immediate data, direct address, register indirect, or indexed operands, even program counter-relative. Eight-bit operations had even more possibilities, including stack pointer-relative addressing and a choice of 8-bit or 16-bits immediate offsets. The address bus was expanded to 24-bits to address 16 MB of memory. The chip was offered with either a 19-bit external bus for 512kB RAM, or a full 24-bit bus for 16MB RAM, the advantage to the smaller bus was a smaller 40-pin package. Like the Z80 before it, the Z800 retained the internal DRAM controller and clock, but added 256 bytes of RAM that could be used either as "scratchpad" RAM, or as a cache. When used in cache mode the programmer could configure it as a data or instruction cache, or both, and the internal memory controller then used it to reduce access to (slower) external memory. There were also ambitious provisions for multiprocessing and either loosely or tightly coupled slave processors, with or without shared global memory. This was known as the ''extended processing architecture'' and ''extended processing units'' (EPU). Another change was the addition of an optional 16-bit data bus, which doubled the rate at which it could access memory if set up properly. Combined with the two address bus sizes this meant that the chip was offered in a total of four versions:


Reason for the failure

The Z800 was, in most ways, a
minicomputer A minicomputer, or colloquially mini, is a class of smaller general purpose computers that developed in the mid-1960s and sold at a much lower price than mainframe and mid-size computers from IBM and its direct competitors. In a 1970 survey, ...
-inspired "super Z80" that would run existing, and larger, programs at considerably higher speeds. However the address and data buses were multiplexed and the chip was, also in other respects, somewhat complicated to program and interface to. Calculation of exact execution times was also very much harder to do than for the Z80. Moreover, the plain Z80 were good enough for most applications at the time so the extra computing power was, in many cases, not worth the added complexity. Bad marketing seems to have hurt the product as well. Hitachi developed the
HD64180 The HD64180 is a Z80-based embedded microprocessor developed by Hitachi with an integrated memory management unit (MMU) and on-chip peripherals. It appeared in 1985. The Hitachi HD64180 "Super Z80" was later licensed to Zilog and sold by them ...
, as a less ambitious Z80 derivative. It had great success, probably because it is almost as simple to program and interface to as the original Z80.


More successful Z80 derivatives (from Zilog)

Apart from the successful
Zilog Z180 The Zilog Z180 eight-bit processor is a successor of the Z80 CPU. It is compatible with the large base of software written for the Z80. The Z180 family adds higher performance and integrated peripheral functions like clock generator, 16-bit count ...
(developed largely by
Hitachi () is a Japanese multinational corporation, multinational Conglomerate (company), conglomerate corporation headquartered in Chiyoda, Tokyo, Japan. It is the parent company of the Hitachi Group (''Hitachi Gurūpu'') and had formed part of the Ni ...
) and Zilog Z182 other attempts were made to extend the Z80 architecture, the
32-bit In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32-bit units. Compared to smaller bit widths, 32-bit computers can perform large calculation ...
Z380 (introduced 1994) was a commercial disappointment except for some specific telecom applications. On the other hand, the fast
24-bit Notable 24-bit machines include the CDC 924 – a 24-bit version of the CDC 1604, CDC lower 3000 series, SDS 930 and SDS 940, the ICT 1900 series, the Elliott 4100 series, and the Datacraft minicomputers/Harris H series. The term SWORD is ...
eZ80 The Zilog eZ80 is an 8-bit microprocessor from Zilog, introduced in 2001. eZ80 is an updated version of the company's first product, the Z80 microprocessor. Design The eZ80 (like the Z380) is binary compatible with the Z80 and Z180, but al ...
(introduced 2001) has been both commercially successful and won engineering awards. Unlike the Z800, Z280, and Z380, the eZ80 does not introduce many new instructions or addressing modes, in comparison to the original Z80, but instead primarily extends the 16-bit registers of the Z80 to 24 bits wide. This enables it to reach 256 times as much memory, and adds a fully pipelined execution unit that executes Z80 opcodes 4× as fast as the original.


Notes


References

* * *


Further reading

* * * {{zilog Zilog microprocessors 16-bit microprocessors