24-bit
   HOME
*





24-bit
Notable 24-bit machines include the CDC 924 – a 24-bit version of the CDC 1604, CDC lower 3000 series, SDS 930 and SDS 940, the ICT 1900 series, the Elliott 4100 series, and the Datacraft minicomputers/Harris H series. The term SWORD is sometimes used to describe a 24-bit data type with the S prefix referring to sesqui. The range of unsigned integers that can be represented in 24 bits is 0 to 16,777,215 ( in hexadecimal). The range of signed integers that can be represented in 24 bits is −8,388,608 to 8,388,607. Usage The IBM System/360, announced in 1964, was a popular computer system with 24-bit addressing and 32-bit general registers and arithmetic. The early 1980s saw the first popular personal computers, including the IBM PC/AT with an Intel 80286 processor using 24-bit addressing and 16-bit general registers and arithmetic, and the Apple Macintosh 128K with a Motorola 68000 processor featuring 24-bit addressing and 32-bit registers. The eZ80 is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CDC 3000
The CDC 3000 series ("thirty-six hundred" of "thirty-one hundred") computers from Control Data Corporation were mid-1960s follow-ons to the CDC 1604 and CDC 924 systems. Over time, a range of machines were produced - divided into * the 48-bit upper 3000 series and * the 24-bit lower 3000 series. Early in the 1970s CDC phased out production of the 3000 series, which had been the cash cows of Control Data during the 1960s; sales of these machines funded the company while the 6000 series was designed. Specifications Upper 3000 series The upper 3000 series used a 48-bit word size. The first 3000 machine to be produced was the CDC 3600; first delivered in June 1963. First deliveries of the CDC 3400 and CDC 3800 were in December 1965. These machines were designed for scientific computing applications; they were the upgrade path for users of the CDC 1604 machines. However these machines were overshadowed by the upcoming 60-bit CDC 6000 series machines when the CDC 6600 w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ICT 1900 Series
ICT 1900 was a family of mainframe computers released by International Computers and Tabulators (ICT) and later International Computers Limited (ICL) during the 1960s and 1970s. The 1900 series was notable for being one of the few non-American competitors to the IBM System/360, enjoying significant success in the European and British Commonwealth markets. Origins In early 1963, ICT was engaged in negotiations to buy the computer business of Ferranti. In order to sweeten the deal, Ferranti demonstrated to ICT the Ferranti-Packard 6000 (FP6000) machine, which had been developed by its Canadian subsidiary Ferranti-Packard, to a design known as Harriac that had been initiated in Ferranti by Harry Johnson and fleshed out by Stanley Gill and John Iliffe. The FP6000 was an advanced design, notably including hardware support for multiprogramming. ICT considered using the FP6000 as their medium-sized processor in the 1965–1968 timeframe, replacing the ICT 1302. Another plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

65816
The W65C816S (also 65C816 or 65816) is an 8/16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1985, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 was the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System. The ''65'' in the part's designation comes from its 65C02 compatibility mode, and the ''816'' signifies that the MPU has selectable 8- and 16-bit register sizes. In addition to the availability of 16-bit registers, the W65C816S features extended memory addressing to 24 bits, supporting up to 16 megabytes of random-access memory, an enhanced instruction set, and a 16 bit stack pointer, as well as several new electrical signals for improved system hardware management. At reset, the W65C816S starts in "emulation mode", meaning it substantially behaves as a 65C02. Thereafter, the W65C816S may b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CDC 924
The CDC 1604 was a 48-bit computer designed and manufactured by Seymour Cray and his team at the Control Data Corporation (CDC). The 1604 is known as one of the first commercially successful transistorized computers. (The IBM 7090 was delivered earlier, in November 1959.) Legend has it that the 1604 designation was chosen by adding CDC's first street address (501 Park Avenue) to Cray's former project, the ERA-UNIVAC 1103. A cut-down 24-bit version, designated the CDC 924, was shortly thereafter produced, and delivered to NASA. The first 1604 was delivered to the U.S. Navy Post Graduate School in January 1960 for applications supporting major Fleet Operations Control Centers primarily for weather prediction in Hawaii, London, and Norfolk, Virginia. By 1964, over 50 systems were built. The CDC 3600, which added five op codes, succeeded the 1604, and "was largely compatible" with it. One of the 1604s was shipped to the Pentagon to DASA (Defense Atomic Support Agency) and used du ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CDC 1604
The CDC 1604 was a 48-bit computer designed and manufactured by Seymour Cray and his team at the Control Data Corporation (CDC). The 1604 is known as one of the first commercially successful transistorized computers. (The IBM 7090 was delivered earlier, in November 1959.) Legend has it that the 1604 designation was chosen by adding CDC's first street address (501 Park Avenue) to Cray's former project, the ERA-UNIVAC 1103. A cut-down 24-bit version, designated the CDC 924, was shortly thereafter produced, and delivered to NASA. The first 1604 was delivered to the U.S. Navy Post Graduate School in January 1960 for applications supporting major Fleet Operations Control Centers primarily for weather prediction in Hawaii, London, and Norfolk, Virginia. By 1964, over 50 systems were built. The CDC 3600, which added five op codes, succeeded the 1604, and "was largely compatible" with it. One of the 1604s was shipped to the Pentagon to DASA (Defense Atomic Support Agency) and used dur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SDS 930
The SDS 930 was a commercial 24-bit computer using bipolar junction transistors sold by Scientific Data Systems. It was announced in December 1963, with first installations in June 1964. Description An SDS 930 system consists of at least three standard () cabinets, weighing about . It is composed of an arithmetic and logic unit, at least 8,192 words (24-bit + simple parity bit) magnetic-core memory, and the IO unit. Two's complement integer arithmetic is used. The machine has integer multiply and divide, but no floating-point hardware. An optional correlation and filtering unit (CFE) can be added, which is capable of very fast floating-point multiply-add operations (primarily intended for digital signal processing applications). A free-standing console is also provided, which includes binary displays of the machine's registers and switches to boot and debug programs. User input is by a Teletype Model 35 ASR unit and a high-speed paper-tape reader (300 cps). Most systems inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




32-bit
In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32-bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GB of RAM to be accessed; far more than previous generations of system architecture allowed. 32-bit designs have been used since the earliest days of electronic computing, in experimental systems and then in large mainframe and minicomputer systems. The first hybrid 16/32-bit microprocessor, the Motorola 68000, was introduced in the late 1970s and used in systems such as the original Apple Macintosh. Fully 32-bit microprocessors such as the Motorola 68020 and Intel 80386 were launched in the early to mid 1980s and became dominant by the early 1990s. This generation of personal computers coincided ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EZ80
The Zilog eZ80 is an 8-bit microprocessor from Zilog, introduced in 2001. eZ80 is an updated version of the company's first product, the Z80 microprocessor. Design The eZ80 (like the Z380) is binary compatible with the Z80 and Z180, but almost three times as fast as the original Z80 chip at the same clock frequency. The eZ80 has a three-stage pipeline. Available at up to 50 MHz (2004), the performance is comparable to a Z80 clocked at 150 MHz if fast memory is used (i.e. no wait states for opcode fetches, for data, or for I/O) or even higher in some applications (a 16-bit addition is 11 times as fast as in the original). The eZ80 also supports direct continuous addressing of 16  MB of memory without a memory management unit, by extending most registers (HL, BC, DE, IX, IY, SP, and PC) from 16 to 24 bits. In order to do so, the CPU has a full 24-bit address mode called ADL mode. Z80 register pairs are extended to 24 bits and renamed with U e.g. HL is now HLU et ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


16-bit Computing
16-bit microcomputers are microcomputers that use 16-bit microprocessors. A 16-bit register can store 216 different values. The range of integer values that can be stored in 16 bits depends on the integer representation used. With the two most common representations, the range is 0 through 65,535 (216 − 1) for representation as an (unsigned) binary number, and −32,768 (−1 × 215) through 32,767 (215 − 1) for representation as two's complement. Since 216 is 65,536, a processor with 16-bit memory addresses can directly access 64 KB (65,536 bytes) of byte-addressable memory. If a system uses segmentation with 16-bit segment offsets, more can be accessed. 16-bit architecture The MIT Whirlwind ( 1951) was quite possibly the first-ever 16-bit computer. It was an unusual word size for the era; most systems used six-bit character code and used a word length of some multiple of 6-bits. This changed with the effort to introduce ASCII, which used a 7-bit code and naturally le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

80286
The Intel 80286 (also marketed as the iAPX 286 and often called Intel 286) is a 16-bit microprocessor that was introduced on February 1, 1982. It was the first 8086-based CPU with separate, non-multiplexed address and data buses and also the first with memory management and wide protection abilities. The 80286 used approximately 134,000 transistors in its original nMOS (HMOS) incarnation and, just like the contemporary 80186, it could correctly execute most software written for the earlier Intel 8086 and 8088 processors. The 80286 was employed for the IBM PC/AT, introduced in 1984, and then widely used in most PC/AT compatible computers until the early 1990s. In 1987, Intel shipped its five-millionth 80286 microprocessor. History and performance Intel's first 80286 chips were specified for a maximum clockrate of 5, 6 or 8 MHz and later releases for 12.5 MHz. AMD and Harris later produced 16 MHz, 20 MHz and 25 MHz parts, respectively. Intersil and F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

68000
The Motorola 68000 (sometimes shortened to Motorola 68k or m68k and usually pronounced "sixty-eight-thousand") is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Sector. The design implements a 32-bit instruction set, with 32-bit registers and a 16-bit internal data bus. The address bus is 24 bits and does not use memory segmentation, which made it easier to program for. Internally, it uses a 16-bit data arithmetic logic unit (ALU) and two more 16-bit ALUs used mostly for addresses, and has a 16-bit external data bus. For this reason, Motorola termed it a 16/32-bit processor. As one of the first widely available processors with a 32-bit instruction set, and running at relatively high speeds for the era, the 68k was a popular design through the 1980s. It was widely used in a new generation of personal computers with graphical user interfaces, including the Macintosh 128K, Amiga, Atari ST, and X68000. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harris Computer Systems
Harris Computer Systems Corporation was an American computer company, in existence during the mid-1990s, that made real-time computing systems. Its products powered a variety of applications, including those for aerospace simulation, data acquisition and control, and signal processing. It was based in Fort Lauderdale, Florida. For twenty years prior, it had been the Harris Computer Systems Division of Harris Corporation, until being spun off as an independent company in 1994. Then in 1996, Harris Computer Systems Corporation itself was acquired by Concurrent Computer Corporation. Origins The origins of Harris Computer Systems began in 1967 in Fort Lauderdale, Florida, when Datacraft Corporation was founded. It would specialize in minicomputers for the scientific engineering market and for educational use. The best known of these were the DC-6024 line, which were based on a 24-bit computing architecture and debuted in 1969. Successive models were denoted with names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]