Zero-propellant Maneuver
   HOME

TheInfoList



OR:

A zero-propellant maneuver (ZPM) is an optimal attitude trajectory used to perform spacecraft rotational control without the need to use thrusters. ZPMs are designed for spacecraft that use momentum storage actuators. Spacecraft ZPMs are used to perform large angle rotations or rate damping (detumbling) without saturating momentum actuators, and momentum dumping (from storage) without thrusters.


Background

Spacecraft rotational operations, such as turning to point in a new direction, are usually performed by
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
storage devices such as
reaction wheels A reaction wheel (RW) is used primarily by spacecraft for three-axis attitude control, and does not require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be ...
or
control moment gyroscope A control moment gyroscope (CMG) is an attitude control device generally used in spacecraft attitude control systems. A CMG consists of a spinning rotor and one or more motorized gimbals that tilt the rotor’s angular momentum. As the rotor tilts ...
s. It is generally preferable to use these devices instead of traditional thrusters, as they are powered by renewable electricity instead of by propellant; firing thrusters uses up the fixed amount of propellant on the spacecraft. Propellant is very costly because it must be carried from earth; once it is used up, the spacecraft's life is over. Therefore, the operational life of the spacecraft is determined by the amount of propellant carried, and the rate at which the propellant is used up. Propellant is used for two main purposes: to maintain the spacecraft in orbit, and to control rotation. Therefore, the less propellant that has to be used for controlling rotation, the more that is available for maintaining orbit, and the longer the lifetime of the spacecraft. However, momentum storage devices have a limited capacity, and that capacity soon becomes saturated when they are required to absorb spacecraft disturbance torques caused by (
gravity gradient Gravity gradiometry is the study and measurement of variations ( anomalies) in the Earth's gravity field. The gravity gradient tensor is the spatial rate of change of gravitational acceleration; as acceleration is a vector quantity, with magnit ...
,
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sola ...
, and
aerodynamic drag In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding fl ...
); when in other words they reach their momentum storage limit. Once saturation is reached, momentum storage devices cannot apply torque to control the spacecraft's orientation. The spacecraft then typically requires thrusters using propellant to 'desaturate' the storage devices, in other words to unload the accumulated momentum, and so to restore the spacecraft's full ability to carry out rotational operations. Spacecraft experience
orbital decay Orbital decay is a gradual decrease of the distance between two orbiting bodies at their closest approach (the periapsis) over many orbital periods. These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or ...
due to drag. To maintain their orbit, thrusters are used to
reboost Reboost is the process of boosting the altitude of an artificial satellite, to increase the time until its orbit will decay and it re-enters the atmosphere. See also * Orbital station-keeping In astrodynamics, orbital station-keeping is keeping a ...
the spacecraft to a higher altitude. Because on board propellant capacity is limited, the spacecraft can only perform a limited number of momentum desaturations or reboosts. Therefore, if momentum desaturations can be reduced or eliminated, a larger fraction of propellant can be used to maintain the spacecraft in its desired
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a p ...
, and it will have a longer operational lifetime. Typically spacecraft rotations are performed as
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
rotations or about a fixed axis (
Euler's rotation theorem In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed p ...
) usually referred to as an eigenaxis. Rotations about an eigenaxis result in the smallest angle between two orientations. Moreover, eigenaxis rotations are performed with a fixed rotation rate or maneuver rate. However, to maintain the spacecraft rotation about the eigenaxis, and at a fixed maneuver rate, requires the momentum storage actuators to overcome disturbance torques acting on the spacecraft. Depending on the intensity of the disturbances, the size of rotation and momentum storage device capacity, momentum storage devices can become saturated even if the spacecraft is rotated at a small maneuver rate. Fortunately, however, the choice of rotation path impacts the spacecraft performance. This enables ZPMs to offer a new way to perform spacecraft rotations. Unlike eigenaxis smallest angle rotations, ZPMs are larger angle but minimum fuel rotations. Unlike eigenaxis fixed axis and maneuver rate rotations, ZPM rotations vary the rotation axis and maneuver rate during the maneuver. Just like eigenaxis rotations, ZPM rotations can be generated by commanding the spacecraft with a time varying attitude and rate command. However, ZPM rotations require significantly more time than eigenaxis rotations. ZPM trajectories can also be used to reduce propellant consumption even when the spacecraft uses thrusters instead of momentum storage devices. This application is referred to as a Reduced Propellant Maneuver (RPM) since even though propellant use is minimized some propellant will have to be used.


Theory

A ZPM is a non-eigenaxis attitude trajectory that exploits the spacecraft environmental dynamics (e.g. gravity gradient, solar pressure, aerodynamics etc.) to eliminate the need for mass expulsion actuators during rotational operations. ZPMs are developed by solving a specific nonlinear two-point-boundary-value optimal control problem for a fixed maneuver end time. Whereas an eigenaxis maneuver maintains a constant rotation axis and maneuver rate, a ZPM uses a time varying rotation axis and maneuver rate. An eigenaxis maneuver attitude trajectory tries to overcome disturbances to maintain a constant maneuver rate, which results in saturating the momentum storage devices. By using a variable maneuver rate, ZPMs avoid saturation of momentum storage actuators. A simplified model for a spacecraft ZPM is a sailboat. A sailboat tacks against the wind to travel in a zig-zag manner without using its outboard motors thus not using any propellant. The sailboat takes advantage of the winds just like ZPM takes advantage of spacecraft environmental disturbances. The sailboat does not take the shortest path to travel from one location to the other. Similarly, a ZPM does not take the shortest angular path between two orientations. One can think of the sailboat rudder as the equivalent of the momentum storage actuators on a spacecraft.


Applications

ZPMs were demonstrated on the
International Space Station The International Space Station (ISS) is the largest modular space station currently in low Earth orbit. It is a multinational collaborative project involving five participating space agencies: NASA (United States), Roscosmos (Russia), JAXA ...
(ISS) in 2006 and 2007. On November 5, 2006, the ISS performed a 90 degree ZPM in 2 hours, while on March 3, 2007 the ISS performed a 180 degree ZPM in 2 hours and 47 minutes. The ZPM
optimal control Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and ...
problems for both ISS maneuvers were solved using
DIDO Dido ( ; , ), also known as Elissa ( , ), was the legendary founder and first queen of the Phoenician city-state of Carthage (located in modern Tunisia), in 814 BC. In most accounts, she was the queen of the Phoenician city-state of Tyre (t ...
software.


History

The optimal control problem used in the ISS ZPM was formulated and solved by Jesse Pietz in his Master's thesis, and the 90° ISS ZPM was developed by Sagar Bhatt for his Master's thesis.S. Bhatt, "Optimal Reorientation of Spacecraft Using Only Control Moment Gyroscopes," Master's Thesis, Dept. of Computational and Applied Mathematics, Rice University, 2007.


See also

*
Attitude control Attitude control is the process of controlling the orientation of an aerospace vehicle with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle ...
*
Control moment gyroscope A control moment gyroscope (CMG) is an attitude control device generally used in spacecraft attitude control systems. A CMG consists of a spinning rotor and one or more motorized gimbals that tilt the rotor’s angular momentum. As the rotor tilts ...
*
DIDO Dido ( ; , ), also known as Elissa ( , ), was the legendary founder and first queen of the Phoenician city-state of Carthage (located in modern Tunisia), in 814 BC. In most accounts, she was the queen of the Phoenician city-state of Tyre (t ...
*
Legendre pseudospectral method The Legendre pseudospectral method for optimal control problems is based on Legendre polynomials. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. A basic version of the Legendre pseudospectral was origi ...
*
Momentum wheel A reaction wheel (RW) is used primarily by spacecraft for three-axis attitude control, and does not require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be ...
*
Reaction wheels A reaction wheel (RW) is used primarily by spacecraft for three-axis attitude control, and does not require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be ...


References

{{Use American English, date=January 2014 International Space Station Spaceflight concepts