HOME

TheInfoList



OR:

A Zener diode is a special type of
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diode ...
designed to reliably allow
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
to flow "backwards" (inverted
polarity Polarity may refer to: Science *Electrical polarity, direction of electrical current *Polarity (mutual inductance), the relationship between components such as transformer windings * Polarity (projective geometry), in mathematics, a duality of ord ...
) when a certain set reverse
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
, known as the ''Zener voltage'', is reached. Zener diodes are manufactured with a great variety of Zener voltages and some are even variable. Some Zener diodes have a sharp, highly doped p–n junction with a low Zener voltage, in which case the reverse conduction occurs due to electron
quantum tunnelling Quantum tunnelling, also known as tunneling ( US) is a quantum mechanical phenomenon whereby a wavefunction can propagate through a potential barrier. The transmission through the barrier can be finite and depends exponentially on the barrier h ...
in the short space between p and n regions − this is known as the
Zener effect In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunn ...
, after
Clarence Zener Clarence Melvin Zener (December 1, 1905 – July 2, 1993) was the American physicist who first (1934) described the property concerning the breakdown of electrical insulators. These findings were later exploited by Bell Labs in the development of ...
. Diodes with a higher Zener voltage have a more gradual junction and their mode of operation also involves
avalanche breakdown Avalanche breakdown (or avalanche effect) is a phenomenon that can occur in both insulating and semiconducting materials. It is a form of electric current multiplication that can allow very large currents within materials which are otherwise good ...
. Both breakdown types are present in Zener diodes with the Zener effect predominating at lower voltages and avalanche breakdown at higher voltages. They are used to generate low-power stabilized supply rails from a higher voltage and to provide reference voltages for circuits, especially stabilized power supplies. They are also used to protect circuits from
overvoltage When the voltage in a circuit or part of it is raised above its upper design limit, this is known as overvoltage. The conditions may be hazardous. Depending on its duration, the overvoltage event can be transient—a voltage spike—or perm ...
, especially
electrostatic discharge Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two electrically charged objects caused by contact, an short circuit, electrical short or dielectric breakdown. A buildup of static electricity can be caused ...
.


History

The device is named after American physicist
Clarence Zener Clarence Melvin Zener (December 1, 1905 – July 2, 1993) was the American physicist who first (1934) described the property concerning the breakdown of electrical insulators. These findings were later exploited by Bell Labs in the development of ...
who first described the
Zener effect In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunn ...
in 1934 in his primarily theoretical studies of breakdown of electrical insulator properties. Later, his work led to the
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
implementation of the effect in form of an electronic device, the Zener diode.


Operation

A conventional solid-state diode allows significant current if it is reverse-biased above its reverse breakdown voltage. When the reverse bias breakdown voltage is exceeded, a conventional diode is subject to high current due to avalanche breakdown. Unless this current is limited by circuitry, the diode may be permanently damaged due to overheating. A Zener diode exhibits almost the same properties, except the device is specially designed so as to have a reduced breakdown voltage, the so-called Zener voltage. By contrast with the conventional device, a reverse-biased Zener diode exhibits a controlled breakdown and allows the current to keep the voltage across the Zener diode close to the Zener breakdown voltage. For example, a diode with a Zener breakdown voltage of 3.2 V exhibits a voltage drop of very nearly 3.2 V across a wide range of reverse currents. The Zener diode is therefore ideal for applications such as the generation of a reference voltage (e.g. for an
amplifier An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It may increase the power significantly, or its main effect may be to boost the v ...
stage), or as a voltage stabilizer for low-current applications. Another mechanism that produces a similar effect is the avalanche effect as in the
avalanche diode In electronics, an avalanche diode is a diode (made from silicon or other semiconductor) that is designed to experience avalanche breakdown at a specified reverse bias voltage. The junction of an avalanche diode is designed to prevent current co ...
. The two types of diode are in fact constructed the same way and both effects are present in diodes of this type. In silicon diodes up to about 5.6 volts, the
Zener effect In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunn ...
is the predominant effect and shows a marked negative
temperature coefficient A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property ''R'' that changes when the temperature changes by ''dT'', the temperature coefficient α is def ...
. Above 5.6 volts, the avalanche effect becomes predominant and exhibits a positive temperature coefficient. In a 5.6 V diode, the two effects occur together, and their temperature coefficients nearly cancel each other out, thus the 5.6 V diode is useful in temperature-critical applications. An alternative, which is used for voltage references that need to be highly stable over long periods of time, is to use a Zener diode with a temperature coefficient (TC) of +2 mV/°C (breakdown voltage 6.2–6.3 V) connected in series with a forward-biased silicon diode (or a transistor B-E junction) manufactured on the same chip. The forward-biased diode has a temperature coefficient of −2 mV/°C, causing the TCs to cancel out. It is also worth noting that the temperature coefficient of a 4.7 V Zener diode is close to that of the emitter-base junction of a silicon transistor at around -2 mV/°C, so in a simple regulating circuit where the 4.7 V diode sets the voltage at the base of an NPN transistor (i.e. their coefficients are acting in parallel), the emitter will be at around 4 V and quite stable with temperature. Modern devices below 4.7 V have similar low temperature coefficients so it is worth checking specification sheets for (or measuring) the coefficient of specific devices if you want to achieve temperature-stable voltages. Modern manufacturing techniques have produced devices with voltages lower than 5.6 V with negligible temperature coefficients, but as higher-voltage devices are encountered, the temperature coefficient rises dramatically. A 75 V diode has 10 times the coefficient of a 12 V diode. Zener and avalanche diodes, regardless of breakdown voltage, are usually marketed under the umbrella term of "Zener diode". Under 5.6 V, where the Zener effect dominates, the IV curve near breakdown is much more rounded, which calls for more care in targeting its biasing conditions. The IV curve for Zeners above 5.6 V (being dominated by avalanche), is much sharper at breakdown.


Construction

The Zener diode's operation depends on the heavy doping of its p–n junction. The depletion region formed in the diode is very thin (<1 µm) and the electric field is consequently very high (about 500 kV/m) even for a small reverse bias voltage of about 5 V, allowing
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s to
tunnel A tunnel is an underground passageway, dug through surrounding soil, earth or rock, and enclosed except for the entrance and exit, commonly at each end. A pipeline is not a tunnel, though some recent tunnels have used immersed tube cons ...
from the valence band of the p-type material to the conduction band of the n-type material. At the atomic scale, this tunneling corresponds to the transport of valence band electrons into the empty conduction band states; as a result of the reduced barrier between these bands and high electric fields that are induced due to the high levels of doping on both sides. The breakdown voltage can be controlled quite accurately in the doping process. While tolerances within 0.07% are available, the most widely used tolerances are 5% and 10%. Breakdown voltage for commonly available Zener diodes can vary widely from 1.2 V to 200 V. For diodes that are lightly doped the breakdown is dominated by the avalanche effect rather than the Zener effect. Consequently, the breakdown voltage is higher (over 5.6 V) for these devices.


Surface Zeners

The emitter-base junction of a bipolar
NPN transistor A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor, uses only one kind of charge carrier. A bipolar t ...
behaves as a Zener diode, with breakdown voltage at about 6.8 V for common bipolar processes and about 10 V for lightly doped base regions in
BiCMOS Bipolar CMOS (BiCMOS) is a semiconductor technology that integrates two semiconductor technologies, those of the bipolar junction transistor and the CMOS (complementary metal-oxide-semiconductor) logic gate, into a single integrated circuit. In ...
processes. Older processes with poor control of doping characteristics had the variation of Zener voltage up to ±1 V, newer processes using ion implantation can achieve no more than ±0.25 V. The NPN transistor structure can be employed as a ''surface Zener diode'', with collector and emitter connected together as its cathode and base region as anode. In this approach the base doping profile usually narrows towards the surface, creating a region with intensified electric field where the avalanche breakdown occurs. The
hot carrier Hot carrier injection (HCI) is a phenomenon in solid-state electronic devices where an electron or a “ hole” gains sufficient kinetic energy to overcome a potential barrier necessary to break an interface state. The term "hot" refers to th ...
s produced by acceleration in the intense field sometime shoot into the oxide layer above the junction and become trapped there. The accumulation of trapped charges can then cause 'Zener walkout', a corresponding change of the Zener voltage of the junction. The same effect can be achieved by
radiation damage Radiation damage is the effect of ionizing radiation on physical objects including non-living structural materials. It can be either detrimental or beneficial for materials. Radiobiology is the study of the action of ionizing radiation on livin ...
. The emitter-base Zener diodes can handle only smaller currents as the energy is dissipated in the base depletion region which is very small. Higher amount of dissipated energy (higher current for longer time, or a short very high current spike) causes thermal damage to the junction and/or its contacts. Partial damage of the junction can shift its Zener voltage. Total destruction of the Zener junction by overheating it and causing migration of metallization across the junction ("spiking") can be used intentionally as a 'Zener zap'
antifuse An antifuse is an electrical device that performs the opposite function to a fuse. Whereas a fuse starts with a low resistance and is designed to permanently break an electrically conductive path (typically when the current through the path exceeds ...
.


Subsurface Zeners

A subsurface Zener diode, also called 'buried Zener', is a device similar to the surface Zener, but with the avalanche region located deeper in the structure, typically several micrometers below the oxide. The hot carriers then lose energy by collisions with the semiconductor lattice before reaching the oxide layer and cannot be trapped there. The Zener walkout phenomenon therefore does not occur here, and the buried Zeners have voltage constant over their entire lifetime. Most buried Zeners have breakdown voltage of 5–7 volts. Several different junction structures are used.


Uses

Zener diodes are widely used as voltage references and as shunt
regulators Regulator may refer to: Technology * Regulator (automatic control), a device that maintains a designated characteristic, as in: ** Battery regulator ** Pressure regulator ** Diving regulator ** Voltage regulator * Regulator (sewer), a control de ...
to regulate the voltage across small circuits. When connected in parallel with a variable voltage source so that it is reverse biased, a Zener diode conducts when the voltage reaches the diode's reverse breakdown voltage. From that point on, the low impedance of the diode keeps the voltage across the diode at that value. In this circuit, a typical voltage reference or regulator, an input voltage, ''U''in (with + on the top), is regulated down to a stable output voltage ''U''out. The breakdown voltage of diode D is stable over a wide current range and holds ''U''out approximately constant even though the input voltage may fluctuate over a wide range. Because of the low impedance of the diode when operated like this, resistor ''R'' is used to limit current through the circuit. In the case of this simple reference, the current flowing in the diode is determined using Ohm's law and the known voltage drop across the resistor ''R''; :I_\text = \frac The value of ''R'' must satisfy two conditions: # ''R'' must be small enough that the current through D keeps D in reverse breakdown. The value of this current is given in the data sheet for D. For example, the common BZX79C5V6 device, a 5.6 V 0.5 W Zener diode, has a recommended reverse current of 5mA. If insufficient current exists through D, then ''U''out is unregulated and less than the nominal breakdown voltage (this differs from
voltage-regulator tube A voltage-regulator tube (VR tube) is an electronic component used as a shunt regulator to hold a voltage constant at a pre-determined level. Physically, these devices resemble vacuum tubes, but there are two main differences: * Their glass env ...
s where the output voltage is higher than nominal and could rise as high as ''U''in). When calculating ''R'', allowance must be made for any current through the external load, not shown in this diagram, connected across ''U''out. # ''R'' must be large enough that the current through D does not destroy the device. If the current through D is ''I''D, its breakdown voltage ''V''B and its maximum power dissipation ''P''max correlate as such: I_D V_B < P_\text. A load may be placed across the diode in this reference circuit, and as long as the Zener stays in reverse breakdown, the diode provides a stable voltage source to the load. Zener diodes in this configuration are often used as stable references for more advanced voltage regulator circuits. Shunt regulators are simple, but the requirements that the ballast resistor be small enough to avoid excessive voltage drop during worst-case operation (low input voltage concurrent with high load current) tends to leave a lot of current flowing in the diode much of the time, making for a fairly wasteful regulator with high quiescent power dissipation, suitable only for smaller loads. These devices are also encountered, typically in series with a base-emitter junction, in transistor stages where selective choice of a device centered on the avalanche or Zener point can be used to introduce compensating temperature co-efficient balancing of the transistor p–n junction. An example of this kind of use would be a DC error amplifier used in a
regulated power supply A regulated power supply is an embedded circuit; it converts unregulated AC (Alternating Current) into a constant DC. With the help of a rectifier it converts AC supply into DC. Its function is to supply a stable voltage (or less often current), to ...
circuit feedback loop system. Zener diodes are also used in
surge protector A 'surge protector'' (or spike suppressor, surge suppressor, surge diverter, surge protection device (SPD) or transient voltage surge suppressor (TVSS) is an appliance or device intended to protect Electronics, electrical devices from voltage s ...
s to limit transient voltage spikes. Another application of the Zener diode is the use of
noise Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arise ...
caused by its
avalanche breakdown Avalanche breakdown (or avalanche effect) is a phenomenon that can occur in both insulating and semiconducting materials. It is a form of electric current multiplication that can allow very large currents within materials which are otherwise good ...
in a
random number generator Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular out ...
.


Waveform clipper

Two Zener diodes facing each other in series clip both halves of an input signal. Waveform clippers can be used not only to reshape a signal, but also to prevent voltage spikes from affecting circuits that are connected to the power supply.


Voltage shifter

A Zener diode can be applied to a circuit with a resistor to act as a voltage shifter. This circuit lowers the output voltage by a quantity that is equal to the Zener diode's breakdown voltage.


Voltage regulator

A Zener diode can be applied in a
voltage regulator A voltage regulator is a system designed to automatically maintain a constant voltage. A voltage regulator may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components ...
circuit to regulate the voltage applied to a load, such as in a
linear regulator In electronics, a linear regulator is a voltage regulator used to maintain a steady voltage. The resistance of the regulator varies in accordance with both the input voltage and the load, resulting in a constant voltage output. The regulating circ ...
.


See also

* Backward diode *
E-series of preferred numbers The E series is a system of preferred numbers (also called preferred values) derived for use in electronic components. It consists of the E3, E6, E12, E24, E48, E96 and E192 series, where the number after the 'E' designates the quantity of ...
*
Transient voltage suppression diode A transient-voltage-suppression (TVS) diode, also transil or thyrector, is an electronic component used to protect electronics from voltage spikes induced on connected wires. Description The device operates by shunting excess current when the ...


References


Further reading

* ''TVS/Zener Theory and Design Considerations''; ON Semiconductor; 127 pages; 2005; HBD854/D. (Free PDF download)
/small>


External links


Patent US4138280A
{{Authority control Diodes Voltage stability