Exclusive or or exclusive disjunction is a
logical operation
In Mathematical logic, logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax (logic), syntax o ...
that is true if and only if its arguments differ (one is true, the other is false).
It is
symbolized by the prefix operator J and by the
infix
An infix is an affix inserted inside a word stem (an existing word or the core of a family of words). It contrasts with ''adfix,'' a rare term for an affix attached to the outside of a stem, such as a prefix or suffix.
When marking text for int ...
operators XOR ( or ), EOR, EXOR,
⊻,
⩒,
⩛,
⊕,
, and
≢. The
negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
of XOR is the
logical biconditional
In logic and mathematics, the logical biconditional, sometimes known as the material biconditional, is the logical connective (\leftrightarrow) used to conjoin two statements and to form the statement " if and only if ", where is known as th ...
, which yields true if and only if the two inputs are the same.
It gains the name "exclusive or" because the meaning of "or" is ambiguous when both
operand
In mathematics, an operand is the object of a mathematical operation, i.e., it is the object or quantity that is operated on.
Example
The following arithmetic expression shows an example of operators and operands:
:3 + 6 = 9
In the above examp ...
s are true; the exclusive or operator ''excludes'' that case. This is sometimes thought of as "one or the other but not both". This could be written as "A or B, but not, A and B".
Since it is associative, it may be considered to be an ''n''-ary operator which is true if and only if an odd number of arguments are true. That is, ''a'' XOR ''b'' XOR ... may be treated as XOR(''a'',''b'',...).
Truth table
The
truth table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional argumen ...
of A XOR B shows that it outputs true whenever the inputs differ:
Equivalences, elimination, and introduction
Exclusive disjunction essentially means 'either one, but not both nor none'. In other words, the statement is true
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bicondi ...
one is true and the other is false. For example, if two horses are racing, then one of the two will win the race, but not both of them. The exclusive disjunction
, also denoted by
? or
, can be expressed in terms of the
logical conjunction
In logic, mathematics and linguistics, And (\wedge) is the truth-functional operator of logical conjunction; the ''and'' of a set of operands is true if and only if ''all'' of its operands are true. The logical connective that represents this ...
("logical and",
), the
disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S ...
("logical or",
), and the
negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
(
) as follows:
:
The exclusive disjunction
can also be expressed in the following way:
:
This representation of XOR may be found useful when constructing a circuit or network, because it has only one
operation and small number of
and
operations. A proof of this identity is given below:
:
It is sometimes useful to write
in the following way:
:
or:
:
This equivalence can be established by applying
De Morgan's laws
In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathem ...
twice to the fourth line of the above proof.
The exclusive or is also equivalent to the negation of a
logical biconditional
In logic and mathematics, the logical biconditional, sometimes known as the material biconditional, is the logical connective (\leftrightarrow) used to conjoin two statements and to form the statement " if and only if ", where is known as th ...
, by the rules of material implication (a
material conditional
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol \rightarrow is interpreted as material implication, a formula P \rightarrow Q is true unless P is true and Q is ...
is equivalent to the disjunction of the negation of its
antecedent and its consequence) and
material equivalence
Material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geolog ...
.
In summary, we have, in mathematical and in engineering notation:
:
Negation
The spirit of De Morgan's laws can be applied, we have:
Relation to modern algebra
Although the
operators
Operator may refer to:
Mathematics
* A symbol indicating a mathematical operation
* Logical operator or logical connective in mathematical logic
* Operator (mathematics), mapping that acts on elements of a space to produce elements of another sp ...
(
conjunction
Conjunction may refer to:
* Conjunction (grammar), a part of speech
* Logical conjunction, a mathematical operator
** Conjunction introduction, a rule of inference of propositional logic
* Conjunction (astronomy), in which two astronomical bodies ...
) and
(
disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S ...
) are very useful in logic systems, they fail a more generalizable structure in the following way:
The systems
and
are
monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
Monoids ...
s, but neither is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
. This unfortunately prevents the combination of these two systems into larger structures, such as a
mathematical ring
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying propert ...
.
However, the system using exclusive or
''is'' an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commut ...
. The combination of operators
and
over elements
produce the well-known
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
. This field can represent any logic obtainable with the system
and has the added benefit of the arsenal of algebraic analysis tools for fields.
More specifically, if one associates
with 0 and
with 1, one can interpret the logical "AND" operation as multiplication on
and the "XOR" operation as addition on
:
:
Using this basis to describe a boolean system is referred to as
algebraic normal form
In Boolean algebra, the algebraic normal form (ANF), ring sum normal form (RSNF or RNF), '' Zhegalkin normal form'', or '' Reed–Muller expansion'' is a way of writing logical formulas in one of three subforms:
* The entire formula is purely tr ...
.
Exclusive or in natural language
Disjunction is often understood exclusively in
natural language
In neuropsychology, linguistics, and philosophy of language, a natural language or ordinary language is any language that has evolved naturally in humans through use and repetition without conscious planning or premeditation. Natural languages ...
s. In English, the disjunctive word "or" is often understood exclusively, particularly when used with the particle "either". The English example below would normally be understood in conversation as implying that Mary is not both a singer and a poet.
:1. Mary is a singer or a poet.
However, disjunction can also be understood inclusively, even in combination with "either". For instance, the first example below shows that "either" can be
felicitously used in combination with an outright statement that both disjuncts are true. The second example shows that the exclusive inference vanishes away under
downward entailing In linguistic semantics, a downward entailing (DE) propositional operator is one that constrains the meaning of an expression to a lower number or degree than would be possible without the expression. For example, "not," "nobody," "few people," "at ...
contexts. If disjunction were understood as exclusive in this example, it would leave open the possibility that some people ate both rice and beans.
:2. Mary is either a singer or a poet or both.
:3. Nobody ate either rice or beans.
Examples such as the above have motivated analyses of the exclusivity inference as
pragmatic
Pragmatism is a philosophical movement.
Pragmatism or pragmatic may also refer to:
*Pragmaticism, Charles Sanders Peirce's post-1905 branch of philosophy
*Pragmatics, a subfield of linguistics and semiotics
*''Pragmatics'', an academic journal in ...
conversational implicature
In pragmatics, a subdiscipline of linguistics, an implicature is something the speaker suggests or implies with an utterance, even though it is not literally expressed. Implicatures can aid in communicating more efficiently than by explicitly sayi ...
s calculated on the basis of an inclusive
semantics
Semantics (from grc, σημαντικός ''sēmantikós'', "significant") is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy
Philosophy (f ...
. Implicatures are typically
cancellable and do not arise in downward entailing contexts if their calculation depends on the
Maxim of Quantity
In social science generally and linguistics specifically, the cooperative principle describes how people achieve effective conversational communication in common social situations—that is, how listeners and speakers act cooperatively and mutual ...
. However, some researchers have treated exclusivity as a bona fide semantic
entailment
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one ...
and proposed nonclassical logics which would validate it.
This behavior of English "or" is also found in other languages. However, many languages have disjunctive constructions which are robustly exclusive such as French ''soit... soit''.
Alternative symbols
The symbol used for exclusive disjunction varies from one field of application to the next, and even depends on the properties being emphasized in a given context of discussion. In addition to the abbreviation "XOR", any of the following symbols may also be seen:
*
+, a plus sign, which has the advantage that all of the ordinary algebraic properties of mathematical
rings
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
and
fields
Fields may refer to:
Music
*Fields (band), an indie rock band formed in 2006
*Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song by ...
can be used without further ado; but the plus sign is also used for inclusive disjunction in some notation systems; note that exclusive disjunction corresponds to
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
modulo
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation).
Given two positive numbers and , modulo (often abbreviated as ) is t ...
2, which has the following addition table, clearly
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to the one above:
*
, a modified plus sign; this symbol is also used in mathematics for the ''
direct sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more ...
'' of algebraic structures
*
J, as in J''pq''
* An inclusive disjunction symbol (
) that is modified in some way, such as
**
**
*
^, the
caret
Caret is the name used familiarly for the character , provided on most QWERTY keyboards by typing . The symbol has a variety of uses in programming and mathematics. The name "caret" arose from its visual similarity to the original proofreade ...
, used in several
programming language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.
The description of a programming ...
s, such as
C,
C++
C++ (pronounced "C plus plus") is a high-level general-purpose programming language created by Danish computer scientist Bjarne Stroustrup as an extension of the C programming language, or "C with Classes". The language has expanded significan ...
,
C#,
D,
Java
Java (; id, Jawa, ; jv, ꦗꦮ; su, ) is one of the Greater Sunda Islands in Indonesia. It is bordered by the Indian Ocean to the south and the Java Sea to the north. With a population of 151.6 million people, Java is the world's List ...
,
Perl
Perl is a family of two high-level, general-purpose, interpreted, dynamic programming languages. "Perl" refers to Perl 5, but from 2000 to 2019 it also referred to its redesigned "sister language", Perl 6, before the latter's name was offici ...
,
Ruby
A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sa ...
,
PHP
PHP is a general-purpose scripting language geared toward web development. It was originally created by Danish-Canadian programmer Rasmus Lerdorf in 1993 and released in 1995. The PHP reference implementation is now produced by The PHP Group ...
and
Python
Python may refer to:
Snakes
* Pythonidae, a family of nonvenomous snakes found in Africa, Asia, and Australia
** ''Python'' (genus), a genus of Pythonidae found in Africa and Asia
* Python (mythology), a mythical serpent
Computing
* Python (pro ...
, denoting the
bitwise XOR operator; not used outside of programming contexts because it is too easily confused with other uses of the caret such as exponentiation.
*
, sometimes written as
**
><
**
>-<
*
=1, in IEC symbology
Properties
If using
binary
Binary may refer to:
Science and technology Mathematics
* Binary number, a representation of numbers using only two digits (0 and 1)
* Binary function, a function that takes two arguments
* Binary operation, a mathematical operation that t ...
values for true (1) and false (0), then ''exclusive or'' works exactly like
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
modulo
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation).
Given two positive numbers and , modulo (often abbreviated as ) is t ...
2.
Computer science
Bitwise operation
Exclusive disjunction is often used for bitwise operations. Examples:
* 1 XOR 1 = 0
* 1 XOR 0 = 1
* 0 XOR 1 = 1
* 0 XOR 0 = 0
* XOR = (this is equivalent to addition without
carry
Carry or carrying may refer to:
People
*Carry (name)
Finance
* Carried interest (or carry), the share of profits in an investment fund paid to the fund manager
* Carry (investment), a financial term: the carry of an asset is the gain or cost of h ...
)
As noted above, since exclusive disjunction is identical to addition modulo 2, the bitwise exclusive disjunction of two ''n''-bit strings is identical to the standard vector of addition in the
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
.
In computer science, exclusive disjunction has several uses:
* It tells whether two bits are unequal.
* It is an optional bit-flipper (the deciding input chooses whether to invert the data input).
* It tells whether there is an
odd
Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric.
Odd may also refer to:
Acronym
* ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ...
number of 1 bits (
is true
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bicondi ...
an odd number of the variables are true), which is equal to the
parity bit
A parity bit, or check bit, is a bit added to a string of binary code. Parity bits are a simple form of error detecting code. Parity bits are generally applied to the smallest units of a communication protocol, typically 8-bit octets (bytes) ...
returned by a
parity function In Boolean algebra, a parity function is a Boolean function whose value is one if and only if the input vector has an odd number of ones. The parity function of two inputs is also known as the XOR function.
The parity function is notable for its ...
.
In logical circuits, a simple
adder can be made with an
XOR gate
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or (\nleftrightarrow) from mathematical log ...
to add the numbers, and a series of AND, OR and NOT gates to create the carry output.
On some computer architectures, it is more efficient to store a zero in a register by XOR-ing the register with itself (bits XOR-ed with themselves are always zero) instead of loading and storing the value zero.
In simple threshold-activated
neural network
A neural network is a network or circuit of biological neurons, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a biological neural network, made up of biological ...
s, modeling the XOR function requires a second layer because XOR is not a
linearly separable
In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions (the Euclidean plane) by thinking of one set of points as being colored blue and the other set of points as being colo ...
function.
Exclusive-or is sometimes used as a simple mixing function in
cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adver ...
, for example, with
one-time pad
In cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked, but requires the use of a single-use pre-shared key that is not smaller than the message being sent. In this technique, a plaintext is paired with a ran ...
or
Feistel network
In cryptography, a Feistel cipher (also known as Luby–Rackoff block cipher) is a symmetric structure used in the construction of block ciphers, named after the German-born physicist and cryptographer Horst Feistel, who did pioneering research whi ...
systems.
Exclusive-or is also heavily used in block ciphers such as AES (Rijndael) or Serpent and in block cipher implementation (CBC, CFB, OFB or CTR).
Similarly, XOR can be used in generating
entropy pool
In computing, a hardware random number generator (HRNG) or true random number generator (TRNG) is a device that generates random numbers from a physical process, rather than by means of an algorithm. Such devices are often based on microscopic ...
s for
hardware random number generator
In computing, a hardware random number generator (HRNG) or true random number generator (TRNG) is a device that generates random numbers from a physical process, rather than by means of an algorithm. Such devices are often based on microscopic ...
s. The XOR operation preserves randomness, meaning that a random bit XORed with a non-random bit will result in a random bit. Multiple sources of potentially random data can be combined using XOR, and the unpredictability of the output is guaranteed to be at least as good as the best individual source.
XOR is used in
RAID
Raid, RAID or Raids may refer to:
Attack
* Raid (military), a sudden attack behind the enemy's lines without the intention of holding ground
* Corporate raid, a type of hostile takeover in business
* Panty raid, a prankish raid by male college ...
3–6 for creating parity information. For example, RAID can "back up" bytes and from two (or more) hard drives by XORing the just mentioned bytes, resulting in () and writing it to another drive. Under this method, if any one of the three hard drives are lost, the lost byte can be re-created by XORing bytes from the remaining drives. For instance, if the drive containing is lost, and can be XORed to recover the lost byte.
XOR is also used to detect an overflow in the result of a signed binary arithmetic operation. If the leftmost retained bit of the result is not the same as the infinite number of digits to the left, then that means overflow occurred. XORing those two bits will give a "1" if there is an overflow.
XOR can be used to swap two numeric variables in computers, using the
XOR swap algorithm; however this is regarded as more of a curiosity and not encouraged in practice.
XOR linked list
An XOR linked list is a type of data structure used in computer programming. It takes advantage of the Bitwise operation#XOR, bitwise XOR operation to decrease storage requirements for doubly linked lists.
Description
An ordinary doubly linked ...
s leverage XOR properties in order to save space to represent
doubly linked list
In computer science, a doubly linked list is a linked data structure that consists of a set of sequentially linked record (computer science), records called node (computer science), nodes. Each node contains three field (computer science), fields: ...
data structures.
In
computer graphics
Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great de ...
, XOR-based drawing methods are often used to manage such items as
bounding boxes and
cursors on systems without
alpha channels or overlay planes.
Encodings
It is also called "not left-right arrow" (
\nleftrightarrow
) in
LaTeX
Latex is an emulsion (stable dispersion) of polymer microparticles in water. Latexes are found in nature, but synthetic latexes are common as well.
In nature, latex is found as a milky fluid found in 10% of all flowering plants (angiosperms ...
-based markdown (
). Apart from the ASCII codes, the operator is encoded at and , both in block
mathematical operators
Mathematical Operators is a Unicode block containing characters for mathematical, logical, and set notation.
Notably absent are the plus sign (+), greater than sign (>) and less than sign (<), due to them already appearing in the Basic ...
.
See also
Notes
External links
All About XORProofs of XOR properties and applications of XOR, CS103: Mathematical Foundations of Computing, Stanford University
{{Logical connectives
Dichotomies
Logical connectives
Semantics