HOME

TheInfoList



OR:

Werckmeister temperaments are the tuning systems described by
Andreas Werckmeister Andreas Werckmeister (November 30, 1645 – October 26, 1706) was a German organist, music theorist, and composer of the Baroque era. He was amongst the earliest advocates of equal temperament, and through this advocacy was highly influential to ...
in his writings.A. Werckmeister: Musicalische Temperatur (Quedlinburg 1691), reprint edited by Rudolf Rasch The tuning systems are numbered in two different ways: the first refers to the order in which they were presented as "good temperaments" in Werckmeister's 1691 treatise, the second to their labelling on his
monochord A monochord, also known as sonometer (see below), is an ancient musical and scientific laboratory instrument, involving one (mono-) string ( chord). The term ''monochord'' is sometimes used as the class-name for any musical stringed instrument h ...
. The monochord labels start from III since
just intonation In music, just intonation or pure intonation is the tuning of musical intervals Interval may refer to: Mathematics and physics * Interval (mathematics), a range of numbers ** Partially ordered set#Intervals, its generalization from numbers to ...
is labelled I and quarter-comma
meantone Meantone temperament is a musical temperament, that is a tuning system, obtained by narrowing the fifths so that their ratio is slightly less than 3:2 (making them ''narrower'' than a perfect fifth), in order to push the thirds closer to pure. Me ...
is labelled II. The tunings I (III), II (IV) and III (V) were presented graphically by a cycle of fifths and a list of
major third In classical music, a third is a musical interval encompassing three staff positions (see Interval number for more details), and the major third () is a third spanning four semitones. Forte, Allen (1979). ''Tonal Harmony in Concept and P ...
s, giving the temperament of each in fractions of a
comma The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline ...
. Werckmeister used the organbuilder's notation of ^ for a downwards tempered or narrowed interval and v for an upward tempered or widened one. (This appears counterintuitive - it is based on the use of a conical tuning tool which would reshape the ends of the pipes.) A pure fifth is simply a dash. Werckmeister was not explicit about whether the
syntonic comma In music theory, the syntonic comma, also known as the chromatic diesis, the Didymean comma, the Ptolemaic comma, or the diatonic comma is a small comma type interval between two musical notes, equal to the frequency ratio 81:80 (= 1.0125) ( ...
or
Pythagorean comma In musical tuning, the Pythagorean comma (or ditonic comma), named after the ancient mathematician and philosopher Pythagoras, is the small interval (or comma) existing in Pythagorean tuning between two enharmonically equivalent notes such as C ...
was meant: the difference between them, the so-called
schisma In music, the schisma (also spelled ''skhisma'') is the interval between a Pythagorean comma (531441:524288) and a syntonic comma (81:80) and equals or 32805:32768 = 1.00113, which is 1.9537 cents (). It may also be defined as: * the differ ...
, is almost inaudible and he stated that it could be divided up among the fifths. The last "Septenarius" tuning was not conceived in terms of fractions of a comma, despite some modern authors' attempts to approximate it by some such method. Instead, Werckmeister gave the string lengths on the monochord directly, and from that calculated how each fifth ought to be tempered.


Werckmeister I (III): "correct temperament" based on 1/4 comma divisions

This tuning uses mostly pure ( perfect) fifths, as in
Pythagorean tuning Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2.Bruce Benward and Marilyn Nadine Saker (2003). ''Music: In Theory and Practice'', seventh edition, 2 vols. (Boston: Mc ...
, but each of the fifths C–G, G–D, D–A and B–F is made smaller, i.e. tempered by 1/4 of the comma. No matter if the Pythagorean comma or the syntonic comma is used, the resulting tempered fifths are for all practical purposes the same as
meantone temperament Meantone temperament is a musical temperament, that is a tuning system, obtained by narrowing the fifths so that their ratio is slightly less than 3:2 (making them ''narrower'' than a perfect fifth), in order to push the thirds closer to pure. M ...
fifths. All major thirds are reasonably close to 400 cents and, because not all fifths are tempered, there is no
wolf fifth In music theory, the wolf fifth (sometimes also called Procrustean fifth, or imperfect fifth) Paul, Oscar (1885). A manual of harmony for use in music-schools and seminaries and for self-instruction', p.165. Theodore Baker, trans. G. Schirmer. ...
and all 12 notes can be used as the tonic. Werckmeister designated this tuning as particularly suited for playing
chromatic Diatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a pair, ...
music ("''ficte''"), which may have led to its popularity as a tuning for
J. S. Bach Johann Sebastian Bach (28 July 1750) was a German composer and musician of the late Baroque period. He is known for his orchestral music such as the '' Brandenburg Concertos''; instrumental compositions such as the Cello Suites; keyboard wo ...
's music in recent years. Because a quarter of the Pythagorean comma is \sqrt /math>, or \frac\sqrt /math>, it is possible to calculate exact mathematical values for the frequency relationships and intervals:


Werckmeister II (IV): another temperament included in the Orgelprobe, divided up through 1/3 comma

In Werckmeister II the fifths C–G, D–A, E–B, F–C, and B–F are tempered narrow by 1/3 comma, and the fifths G–D and E–B are widened by 1/3 comma. The other fifths are pure. Werckmeister designed this tuning for playing mainly
diatonic Diatonic and chromatic are terms in music theory that are most often used to characterize Scale (music), scales, and are also applied to musical instruments, Interval (music), intervals, Chord (music), chords, Musical note, notes, musical sty ...
music (i.e. rarely using the "black notes"). Most of its intervals are close to sixth-comma
meantone Meantone temperament is a musical temperament, that is a tuning system, obtained by narrowing the fifths so that their ratio is slightly less than 3:2 (making them ''narrower'' than a perfect fifth), in order to push the thirds closer to pure. Me ...
. Werckmeister also gave a table of monochord lengths for this tuning, setting C=120 units, a practical approximation to the exact theoretical values. Following the monochord numbers the G and D are somewhat lower than their theoretical values but other notes are somewhat higher.


Werckmeister III (V): an additional temperament divided up through 1/4 comma

In Werckmeister III the fifths D–A, A–E, F–C, C–G, and F–C are narrowed by 1/4, and the fifth G–D is widened by 1/4 comma. The other fifths are pure. This temperament is closer to
equal temperament An equal temperament is a musical temperament or tuning system, which approximates just intervals by dividing an octave (or other interval) into equal steps. This means the ratio of the frequencies of any adjacent pair of notes is the same, wh ...
than the previous two.


Werckmeister IV (VI): the Septenarius tunings

This tuning is based on a division of the
monochord A monochord, also known as sonometer (see below), is an ancient musical and scientific laboratory instrument, involving one (mono-) string ( chord). The term ''monochord'' is sometimes used as the class-name for any musical stringed instrument h ...
length into 196 = 7\times 7\times 4 parts. The various notes are then defined by which 196-division one should place the bridge on in order to produce their pitches. The resulting scale has
rational Rationality is the quality of being guided by or based on reasons. In this regard, a person acts rationally if they have a good reason for what they do or a belief is rational if it is based on strong evidence. This quality can apply to an abi ...
frequency relationships, so it is mathematically distinct from the
irrational Irrationality is cognition, thinking, talking, or acting without inclusion of rationality. It is more specifically described as an action or opinion given through inadequate use of reason, or through emotional distress or cognitive deficiency. T ...
tempered values above; however in practice, both involve pure and impure sounding fifths. Werckmeister also gave a version where the total length is divided into 147 parts, which is simply a transposition of the intervals of the 196-tuning. He described the Septenarius as "an additional temperament which has nothing at all to do with the divisions of the comma, nevertheless in practice so correct that one can be really satisfied with it". One apparent problem with these tunings is the value given to D (or A in the transposed version): Werckmeister writes it as 176. However this produces a musically bad effect because the fifth G–D would then be very flat (more than half a comma); the third B–D would be pure, but D–F would be more than a comma too sharp – all of which contradict the rest of Werckmeister's writings on temperament. In the illustration of the monochord division, the number "176" is written one place too far to the right, where 175 should be. Therefore it is conceivable that the number 176 is a mistake for 175, which gives a musically much more consistent result. Both values are given in the table below. In the tuning with D=175, the fifths C–G, G–D, D–A, B–F, F–C, and B–F are tempered narrow, while the fifth G–D is tempered wider than pure; the other fifths are pure.


External sources


196-EDL & 1568-EDL and Septenarius tunings
* Well Tempered based on Werckmeisters last book Musikalische Paradoxal-Discourse (1707) is Equal Temperament. See: https://www.academia.edu/5210832/18th_Century_Quotes_on_J.S._Bachs_Temperament


References

{{musical tuning Musical temperaments