In
arithmetic geometry
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic variety, alg ...
, the Weil–Châtelet group or WC-group of an
algebraic group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.
Man ...
such as an
abelian variety
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular func ...
''A'' defined over a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
''K'' is the
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commut ...
of
principal homogeneous space
In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-em ...
s for ''A'', defined over ''K''. named it for who introduced it for
elliptic curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
s, and , who introduced it for more general groups. It plays a basic role in the
arithmetic of abelian varieties
In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has b ...
, in particular for elliptic curves, because of its connection with
infinite descent In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold fo ...
.
It can be defined directly from
Galois cohomology In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated to a field extension ''L''/''K'' acts in a nat ...
, as
, where
is the
absolute Galois group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' tha ...
of ''K''. It is of particular interest for
local field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact t ...
s and
global field In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields:
* Algebraic number field: A finite extension of \mathbb
*Global function fi ...
s, such as
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a f ...
s. For ''K'' a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
, proved that the Weil–Châtelet group is trivial for elliptic curves, and proved that it is trivial for any connected algebraic group.
See also
The
Tate–Shafarevich group In arithmetic geometry, the Tate–Shafarevich group of an abelian variety (or more generally a group scheme) defined over a number field consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of ...
of an abelian variety ''A'' defined over a number field ''K'' consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of ''K''.
The
Selmer group
In arithmetic geometry, the Selmer group, named in honor of the work of by , is a group constructed from an isogeny of abelian varieties.
The Selmer group of an isogeny
The Selmer group of an abelian variety ''A'' with respect to an isogeny ''f ...
, named after
Ernst S. Selmer
Ernst Sejersted Selmer (11 February 1920 – 8 November 2006) was a Norwegian mathematician, who worked in number theory, as well as a cryptologist. The Selmer group of an Abelian variety is named after him. His primary contributions to mathemati ...
, of ''A'' with respect to an
isogeny In mathematics, in particular, in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel.
If the groups are abelian varieties, then any morphism of the underlying ...
of abelian varieties is a related group which can be defined in terms of Galois cohomology as
:
where ''A''
v 'f''denotes the ''f''-
torsion
Torsion may refer to:
Science
* Torsion (mechanics), the twisting of an object due to an applied torque
* Torsion of spacetime, the field used in Einstein–Cartan theory and
** Alternatives to general relativity
* Torsion angle, in chemistry
Bi ...
of ''A''
v and
is the local Kummer map
:
.
References
*
*
*
*
*
*
*
*
*
* English translation in his collected mathematical papers.
*
*
{{DEFAULTSORT:Weil-Chatelet group
Number theory