HOME

TheInfoList



OR:

A pump is a device that moves fluids ( liquids or
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
es), or sometimes
slurries A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal pu ...
, by mechanical action, typically converted from electrical energy into hydraulic energy. Pumps can be classified into three major groups according to the method they use to move the fluid: ''direct lift'', ''displacement'', and ''gravity'' pumps. Mechanical pumps serve in a wide range of applications such as pumping water from wells,
aquarium filter Aquarium filters are critical components of both freshwater and marine aquaria.Leibel WS (1993) ''A fishkeepers guide to South American cichlids.'' Tetra Press. Belgium pg 12-14. Aquarium filters remove physical and soluble chemical waste product ...
ing,
pond A pond is an area filled with water, either natural or artificial, that is smaller than a lake. Defining them to be less than in area, less than deep, and with less than 30% emergent vegetation helps in distinguishing their ecology from ...
filtering and
aeration Aeration (also called aerification or aeriation) is the process by which air is circulated through, mixed with or dissolved in a liquid or other substances that act as a fluid (such as soil). Aeration processes create additional surface area in ...
, in the
car industry The automotive industry comprises a wide range of companies and organizations involved in the design, development, manufacturing, marketing, and selling of motor vehicles. It is one of the world's largest industries by revenue (from 16 % such ...
for water-cooling and fuel injection, in the energy industry for pumping oil and
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbo ...
or for operating
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat an ...
s and other components of
heating, ventilation and air conditioning Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HV ...
systems. In the
medical industry The healthcare industry (also called the medical industry or health economy) is an aggregation and integration of sectors within the economic system that provides goods and services to treat patients with curative, preventive, rehabilitative, a ...
, pumps are used for biochemical processes in developing and manufacturing medicine, and as artificial replacements for body parts, in particular the
artificial heart An artificial heart is a device that replaces the heart. Artificial hearts are typically used to bridge the time to heart transplantation, or to permanently replace the heart in the case that a heart transplant (from a deceased human or, exper ...
and penile prosthesis. When a casing contains only one revolving
impeller An impeller or impellor is a rotor used to increase the pressure and flow of a fluid. It is the opposite of a turbine, which extracts energy from, and reduces the pressure of, a flowing fluid. In pumps An impeller is a rotating componen ...
, it is called a single-stage pump. When a casing contains two or more revolving impellers, it is called a double- or multi-stage pump. In biology, many different types of chemical and biomechanical pumps have
evolved Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
; biomimicry is sometimes used in developing new types of mechanical pumps.


Types

Mechanical pumps may be submerged in the fluid they are pumping or be placed external to the fluid. Pumps can be classified by their method of displacement into positive-displacement pumps,
impulse pumps Impulse or Impulsive may refer to: Science * Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time * Impulse noise (disambiguation) * Specific impulse, the change in momentum per uni ...
,
velocity pumps Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
,
gravity pumps In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
,
steam pumps A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy. Pumps can be classified into three major groups according to the method they ...
and
valveless pumps The Valveless was an English automobile manufactured, after lengthy development, from 1908 until 1915 in Huddersfield, Yorkshire. The successor to the Ralph Lucas Valveless, the car marked the entry of the David Brown & Sons group into the m ...
. There are three basic types of pumps: positive-displacement, centrifugal and
axial-flow An axial compressor is a gas compressor that can continuously pressurize gases. It is a rotating, airfoil-based compressor in which the gas or working fluid principally flows parallel to the axis of rotation, or axially. This differs from other ...
pumps. In centrifugal pumps the direction of flow of the fluid changes by ninety degrees as it flows over an impeller, while in axial flow pumps the direction of flow is unchanged.


Positive-displacement pumps

A positive-displacement pump makes a fluid move by trapping a fixed amount and forcing (displacing) that trapped volume into the discharge pipe. Some positive-displacement pumps use an expanding cavity on the suction side and a decreasing cavity on the discharge side. Liquid flows into the pump as the cavity on the suction side expands and the liquid flows out of the discharge as the cavity collapses. The volume is constant through each cycle of operation.


Positive-displacement pump behavior and safety

Positive-displacement pumps, unlike centrifugal, can theoretically produce the same flow at a given speed (rpm) no matter what the discharge pressure. Thus, positive-displacement pumps are ''constant flow machines''. However, a slight increase in internal leakage as the pressure increases prevents a truly constant flow rate. A positive-displacement pump must not operate against a closed valve on the discharge side of the pump, because it has no shutoff head like centrifugal pumps. A positive-displacement pump operating against a closed discharge valve continues to produce flow and the pressure in the discharge line increases until the line bursts, the pump is severely damaged, or both. A relief or
safety valve A safety valve is a valve that acts as a fail-safe. An example of safety valve is a pressure relief valve (PRV), which automatically releases a substance from a boiler, pressure vessel, or other system, when the pressure or temperature exceeds ...
on the discharge side of the positive-displacement pump is therefore necessary. The relief valve can be internal or external. The pump manufacturer normally has the option to supply internal relief or safety valves. The internal valve is usually used only as a safety precaution. An external relief valve in the discharge line, with a return line back to the suction line or supply tank provides increased
safety Safety is the state of being "safe", the condition of being protected from harm or other danger. Safety can also refer to the control of recognized hazards in order to achieve an acceptable level of risk. Meanings There are two slightly dif ...
.


Positive-displacement types

A positive-displacement pump can be further classified according to the mechanism used to move the fluid: * ''Rotary-type'' positive displacement: internal or external
gear pump A gear pump uses the meshing of gears to pump fluid by displacement. They are one of the most common types of pumps for hydraulic fluid power applications. The gear pump was invented around 1600 by Johannes Kepler. Gear pumps are also wide ...
,
screw pump A screw pump is a positive-displacement pump that use one or several screws to move fluid solids or liquids along the screw(s) axis. Three principal forms exist; In its simplest form (the Archimedes' screw pump or 'water screw'), a single sc ...
,
lobe pump A lobe pump, or rotary lobe pump, is a type of positive displacement pump. It is similar to a gear pump except the lobes are designed to almost meet, rather than touch and turn each other. An early example of a lobe pump is the Roots Blower, pate ...
, shuttle block, flexible vane or sliding vane, circumferential piston,
flexible impeller A flexible impeller pump is a positive-displacement pump that, by deforming impeller vanes, draws the liquid into the pump housing and moves it to the discharge port with a constant flow rate. The flexibility of the vanes enables a tight seal ...
, helical twisted roots (e.g. the Wendelkolben pump) or
liquid-ring pump A liquid-ring pump is a rotating positive-displacement gas pump, with liquid under centrifugal force acting as a seal. They are typically used as a vacuum pump, but can also be used as a gas compressor. The function of a liquid-ring pump is si ...
s * ''Reciprocating-type'' positive displacement:
piston pump A piston pump is a type of positive displacement pump where the high-pressure seal reciprocates with the piston. Piston pumps can be used to move liquids or compress gases. They can operate over a wide range of pressures. High pressure operatio ...
s,
plunger pump A plunger pump is a type of positive displacement pump where the high-pressure seal is stationary and a smooth cylindrical plunger slides through the seal. This makes them different from piston pumps and allows them to be used at higher pressures. ...
s or diaphragm pumps * ''Linear-type'' positive displacement:
rope pump A rope pump is a kind of pump where a loose hanging rope is lowered into a well and drawn up through a long pipe with the bottom immersed in water. On the rope, round disks or knots matching the diameter of the pipe are attached which pull the wa ...
s and chain pumps


= Rotary positive-displacement pumps

= These pumps move fluid using a rotating mechanism that creates a vacuum that captures and draws in the liquid. ''Advantages:'' Rotary pumps are very efficient because they can handle highly viscous fluids with higher flow rates as viscosity increases. ''Drawbacks:'' The nature of the pump requires very close clearances between the rotating pump and the outer edge, making it rotate at a slow, steady speed. If rotary pumps are operated at high speeds, the fluids cause erosion, which eventually causes enlarged clearances that liquid can pass through, which reduces efficiency. Rotary positive-displacement pumps fall into 5 main types: *
Gear pump A gear pump uses the meshing of gears to pump fluid by displacement. They are one of the most common types of pumps for hydraulic fluid power applications. The gear pump was invented around 1600 by Johannes Kepler. Gear pumps are also wide ...
s – a simple type of rotary pump where the liquid is pushed around a pair of gears. *
Screw pump A screw pump is a positive-displacement pump that use one or several screws to move fluid solids or liquids along the screw(s) axis. Three principal forms exist; In its simplest form (the Archimedes' screw pump or 'water screw'), a single sc ...
s – the shape of the internals of this pump is usually two screws turning against each other to pump the liquid * Rotary vane pumps * Hollow disk pumps (also known as eccentric disc pumps or Hollow rotary disc pumps), similar to
scroll compressor A scroll compressor (also called ''spiral compressor'', scroll pump and scroll vacuum pump) is a device for compressing air or refrigerant. It is used in air conditioning equipment, as an automobile supercharger (where it is known as a scroll ...
s, these have a cylindrical rotor encased in a circular housing. As the rotor orbits and rotates to some degree, it traps fluid between the rotor and the casing, drawing the fluid through the pump. It is used for highly viscous fluids like petroleum-derived products, and it can also support high pressures of up to 290 psi. * Vibratory pumps or vibration pumps are similar to
linear compressor A linear compressor is a gas compressor where the piston moves along a linear track to minimize friction and reduce energy loss during conversion of motion. This technology has been successfully used in cryogenic applications which must be oilless ...
s, having the same operating principle. They work by using a spring-loaded piston with an electromagnet connected to AC current through a diode. The spring-loaded piston is the only moving part, and it is placed in the center of the electromagnet. During the positive cycle of the AC current, the diode allows energy to pass through the electromagnet, generating a magnetic field that moves the piston backwards, compressing the spring, and generating suction. During the negative cycle of the AC current, the diode blocks current flow to the electromagnet, letting the spring uncompress, moving the piston forward, and pumping the fluid and generating pressure, like a reciprocating pump. Due to its low cost, it is widely used in inexpensive
espresso machine An espresso machine brews coffee by forcing pressurized water near boiling point through a "puck" of ground coffee and a filter in order to produce a thick, concentrated coffee called espresso. The first machine for making espresso was built in ...
s. However, vibratory pumps cannot be operated for more than one minute, as they generate large amounts of heat. Linear compressors do not have this problem, as they can be cooled by the working fluid (which is often a refrigerant).


= Reciprocating positive-displacement pumps

= Reciprocating pumps move the fluid using one or more oscillating pistons, plungers, or membranes (diaphragms), while valves restrict fluid motion to the desired direction. In order for suction to take place, the pump must first pull the plunger in an outward motion to decrease pressure in the chamber. Once the plunger pushes back, it will increase the chamber pressure and the inward pressure of the plunger will then open the discharge valve and release the fluid into the delivery pipe at constant flow rate and increased pressure. Pumps in this category range from ''simplex'', with one cylinder, to in some cases ''quad'' (four) cylinders, or more. Many reciprocating-type pumps are ''duplex'' (two) or ''triplex'' (three) cylinder. They can be either ''single-acting'' with suction during one direction of piston motion and discharge on the other, or ''double-acting'' with suction and discharge in both directions. The pumps can be powered manually, by air or steam, or by a belt driven by an engine. This type of pump was used extensively in the 19th century—in the early days of steam propulsion—as boiler feed water pumps. Now reciprocating pumps typically pump highly viscous fluids like concrete and heavy oils, and serve in special applications that demand low flow rates against high resistance. Reciprocating
hand pump Hand pumps are manually operated pumps; they use human power and mechanical advantage to move fluids or air from one place to another. They are widely used in every country in the world for a variety of industrial, marine, irrigation and leisu ...
s were widely used to pump water from wells. Common
bicycle pump A bicycle pump is a type of positive-displacement air pump specifically designed for inflating bicycle tires. It has a connection or adapter for use with one or both of the two most common types of valves used on bicycles, Schrader or Pre ...
s and foot pumps for
inflation In economics, inflation is an increase in the general price level of goods and services in an economy. When the general price level rises, each unit of currency buys fewer goods and services; consequently, inflation corresponds to a reduct ...
use reciprocating action. These positive-displacement pumps have an expanding cavity on the suction side and a decreasing cavity on the discharge side. Liquid flows into the pumps as the cavity on the suction side expands and the liquid flows out of the discharge as the cavity collapses. The volume is constant given each cycle of operation and the pump's volumetric efficiency can be achieved through routine maintenance and inspection of its valves. Typical reciprocating pumps are: * ''
Plunger pump A plunger pump is a type of positive displacement pump where the high-pressure seal is stationary and a smooth cylindrical plunger slides through the seal. This makes them different from piston pumps and allows them to be used at higher pressures. ...
s'' – a reciprocating plunger pushes the fluid through one or two open valves, closed by suction on the way back. * '' Diaphragm pumps'' – similar to plunger pumps, where the plunger pressurizes hydraulic oil which is used to flex a diaphragm in the pumping cylinder. Diaphragm valves are used to pump hazardous and toxic fluids. * ''
Piston pump A piston pump is a type of positive displacement pump where the high-pressure seal reciprocates with the piston. Piston pumps can be used to move liquids or compress gases. They can operate over a wide range of pressures. High pressure operatio ...
s'' displacement pumps'' – usually simple devices for pumping small amounts of liquid or gel manually. The common hand soap dispenser is such a pump. * ''
Radial piston pump A radial piston pump is a form of hydraulic pump. The working pistons extend in a radial direction symmetrically around the drive shaft, in contrast to the axial piston pump. Construction The stroke of each piston is caused by an eccentric dri ...
s'' - a form of hydraulic pump where pistons extend in a radial direction.


=Various positive-displacement pumps

= The positive-displacement principle applies in these pumps: * Rotary lobe pump *
Progressive cavity pump Progressive may refer to: Politics * Progressivism, a political philosophy in support of social reform ** Progressivism in the United States, the political philosophy in the American context * Progressive realism, an American foreign policy pa ...
* Rotary gear pump *
Piston pump A piston pump is a type of positive displacement pump where the high-pressure seal reciprocates with the piston. Piston pumps can be used to move liquids or compress gases. They can operate over a wide range of pressures. High pressure operatio ...
* Diaphragm pump *
Screw pump A screw pump is a positive-displacement pump that use one or several screws to move fluid solids or liquids along the screw(s) axis. Three principal forms exist; In its simplest form (the Archimedes' screw pump or 'water screw'), a single sc ...
*
Gear pump A gear pump uses the meshing of gears to pump fluid by displacement. They are one of the most common types of pumps for hydraulic fluid power applications. The gear pump was invented around 1600 by Johannes Kepler. Gear pumps are also wide ...
* Hydraulic pump * Rotary vane pump * Peristaltic pump *
Rope pump A rope pump is a kind of pump where a loose hanging rope is lowered into a well and drawn up through a long pipe with the bottom immersed in water. On the rope, round disks or knots matching the diameter of the pipe are attached which pull the wa ...
*
Flexible impeller A flexible impeller pump is a positive-displacement pump that, by deforming impeller vanes, draws the liquid into the pump housing and moves it to the discharge port with a constant flow rate. The flexibility of the vanes enables a tight seal ...
 pump


Gear pump

This is the simplest form of rotary positive-displacement pumps. It consists of two meshed gears that rotate in a closely fitted casing. The tooth spaces trap fluid and force it around the outer periphery. The fluid does not travel back on the meshed part, because the teeth mesh closely in the center. Gear pumps see wide use in car engine oil pumps and in various
hydraulic power pack Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counter ...
s.


Screw pump

A
screw pump A screw pump is a positive-displacement pump that use one or several screws to move fluid solids or liquids along the screw(s) axis. Three principal forms exist; In its simplest form (the Archimedes' screw pump or 'water screw'), a single sc ...
is a more complicated type of rotary pump that uses two or three screws with opposing thread — e.g., one screw turns clockwise and the other counterclockwise. The screws are mounted on parallel shafts that have gears that mesh so the shafts turn together and everything stays in place. The screws turn on the shafts and drive fluid through the pump. As with other forms of rotary pumps, the clearance between moving parts and the pump's casing is minimal.


Progressing cavity pump

Widely used for pumping difficult materials, such as sewage sludge contaminated with large particles, this pump consists of a helical rotor, about ten times as long as its width. This can be visualized as a central core of diameter ''x'' with, typically, a curved spiral wound around of thickness half ''x'', though in reality it is manufactured in a single casting. This shaft fits inside a heavy-duty rubber sleeve, of wall thickness also typically ''x''. As the shaft rotates, the rotor gradually forces fluid up the rubber sleeve. Such pumps can develop very high pressure at low volumes.


Roots-type pumps

A Roots lobe pump Named after the Roots brothers who invented it, this
lobe pump A lobe pump, or rotary lobe pump, is a type of positive displacement pump. It is similar to a gear pump except the lobes are designed to almost meet, rather than touch and turn each other. An early example of a lobe pump is the Roots Blower, pate ...
displaces the fluid trapped between two long helical rotors, each fitted into the other when perpendicular at 90°, rotating inside a triangular shaped sealing line configuration, both at the point of suction and at the point of discharge. This design produces a continuous flow with equal volume and no vortex. It can work at low pulsation rates, and offers gentle performance that some applications require. Applications include: * High capacity industrial air compressors. *
Roots supercharger The Roots-type blower is a positive displacement lobe pump which operates by pumping a fluid with a pair of meshing lobes resembling a set of stretched gears. Fluid is trapped in pockets surrounding the lobes and carried from the intake si ...
s on
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal c ...
s. * A brand of civil defense siren, the
Federal Signal Corporation Federal Signal Corporation is an American manufacturer headquartered in Oak Brook, Illinois. Federal Signal manufactures street sweeper vehicles, public address systems, emergency vehicle equipment, and emergency vehicle lighting. The comp ...
's
Thunderbolt A thunderbolt or lightning bolt is a symbolic representation of lightning when accompanied by a loud thunderclap. In Indo-European mythology, the thunderbolt was identified with the 'Sky Father'; this association is also found in later Hel ...
.


Peristaltic pump

A ''peristaltic pump'' is a type of positive-displacement pump. It contains fluid within a flexible tube fitted inside a circular pump casing (though linear peristaltic pumps have been made). A number of ''rollers'', ''shoes'', or ''wipers'' attached to a
rotor Rotor may refer to: Science and technology Engineering * Rotor (electric), the non-stationary part of an alternator or electric motor, operating with a stationary element so called the stator *Helicopter rotor, the rotary wing(s) of a rotorcraft ...
compresses the flexible tube. As the rotor turns, the part of the tube under compression closes (or ''occludes''), forcing the fluid through the tube. Additionally, when the tube opens to its natural state after the passing of the cam it draws (''restitution'') fluid into the pump. This process is called
peristalsis Peristalsis ( , ) is a radially symmetrical contraction and relaxation of muscles that propagate in a wave down a tube, in an anterograde direction. Peristalsis is progression of coordinated contraction of involuntary circular muscles, whic ...
and is used in many biological systems such as the gastrointestinal tract.


Plunger pumps

''Plunger pumps'' are reciprocating positive-displacement pumps. These consist of a cylinder with a reciprocating plunger. The suction and discharge valves are mounted in the head of the cylinder. In the suction stroke, the plunger retracts and the suction valves open causing suction of fluid into the cylinder. In the forward stroke, the plunger pushes the liquid out of the discharge valve. Efficiency and common problems: With only one cylinder in plunger pumps, the fluid flow varies between maximum flow when the plunger moves through the middle positions, and zero flow when the plunger is at the end positions. A lot of energy is wasted when the fluid is accelerated in the piping system. Vibration and ''
water hammer Hydraulic shock (colloquial: water hammer; fluid hammer) is a pressure surge or wave caused when a fluid in motion, usually a liquid but sometimes also a gas is forced to stop or change direction suddenly; a momentum change. This phenomenon com ...
'' may be a serious problem. In general, the problems are compensated for by using two or more cylinders not working in phase with each other.


Triplex-style plunger pumps

Triplex plunger pumps use three plungers, which reduces the pulsation of single reciprocating plunger pumps. Adding a pulsation dampener on the pump outlet can further smooth the ''pump ripple'', or ripple graph of a pump transducer. The dynamic relationship of the high-pressure fluid and plunger generally requires high-quality plunger seals. Plunger pumps with a larger number of plungers have the benefit of increased flow, or smoother flow without a pulsation damper. The increase in moving parts and crankshaft load is one drawback. Car washes often use these triplex-style plunger pumps (perhaps without pulsation dampers). In 1968, William Bruggeman reduced the size of the triplex pump and increased the lifespan so that car washes could use equipment with smaller footprints. Durable high-pressure seals, low-pressure seals and oil seals, hardened crankshafts, hardened connecting rods, thick ceramic plungers and heavier duty ball and roller bearings improve reliability in triplex pumps. Triplex pumps now are in a myriad of markets across the world. Triplex pumps with shorter lifetimes are commonplace to the home user. A person who uses a home pressure washer for 10 hours a year may be satisfied with a pump that lasts 100 hours between rebuilds. Industrial-grade or continuous duty triplex pumps on the other end of the quality spectrum may run for as much as 2,080 hours a year. The oil and gas drilling industry uses massive semi trailer-transported triplex pumps called
mud pump A mud pump (sometimes referred to as a mud drilling pump or drilling mud pump), is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to ) down the drill string and back up the annulus. A mud pump is an ...
s to pump drilling mud, which cools the drill bit and carries the cuttings back to the surface. Drillers use triplex or even quintuplex pumps to inject water and solvents deep into shale in the extraction process called ''
fracking Fracking (also known as hydraulic fracturing, hydrofracturing, or hydrofracking) is a well stimulation technique involving the fracturing of bedrock formations by a pressurized liquid. The process involves the high-pressure injection of "frac ...
''.


Compressed-air-powered double-diaphragm pumps

One modern application of positive-displacement pumps is compressed-air-powered double- diaphragm pumps. Run on compressed air, these pumps are intrinsically safe by design, although all manufacturers offer ATEX certified models to comply with industry regulation. These pumps are relatively inexpensive and can perform a wide variety of duties, from pumping water out of bunds to pumping hydrochloric acid from secure storage (dependent on how the pump is manufactured – elastomers / body construction). These double-diaphragm pumps can handle viscous fluids and abrasive materials with a gentle pumping process ideal for transporting shear-sensitive media.


Rope pumps

Devised in China as chain pumps over 1000 years ago, these pumps can be made from very simple materials: A rope, a wheel and a pipe are sufficient to make a simple rope pump. Rope pump efficiency has been studied by grassroots organizations and the techniques for making and running them have been continuously improved.


Impulse pumps

Impulse pumps use pressure created by gas (usually air). In some impulse pumps the gas trapped in the liquid (usually water), is released and accumulated somewhere in the pump, creating a pressure that can push part of the liquid upwards. Conventional impulse pumps include: * ''
Hydraulic ram A hydraulic ram, or hydram, is a cyclic water pump powered by hydropower. It takes in water at one "hydraulic head" (pressure) and flow rate, and outputs water at a higher hydraulic head and lower flow rate. The device uses the water hammer ef ...
pumps'' – kinetic energy of a low-head water supply is stored temporarily in an air-bubble
hydraulic accumulator A hydraulic accumulator is a pressure storage reservoir in which an incompressible hydraulic fluid is held under pressure that is applied by an external source of mechanical energy. The external source can be an engine, a spring, a raised weight ...
, then used to drive water to a higher head. * ''
Pulser pump A pulser pump is a gas lift device that uses gravity to pump water to a higher elevation. It has no moving parts. Operation A pulser pump makes use of water that flows through pipes and an air chamber from an upper reservoir to a lower reservoir. ...
s'' – run with natural resources, by kinetic energy only. * ''
Airlift pump An airlift pump is a pump that has low suction and moderate discharge of liquid and entrained solids. The pump injects compressed air at the bottom of the discharge pipe which is immersed in the liquid. The compressed air mixes with the liquid c ...
s'' – run on air inserted into pipe, which pushes the water up when bubbles move upward Instead of a gas accumulation and releasing cycle, the pressure can be created by burning of hydrocarbons. Such combustion driven pumps directly transmit the impulse from a combustion event through the actuation membrane to the pump fluid. In order to allow this direct transmission, the pump needs to be almost entirely made of an elastomer (e.g. silicone rubber). Hence, the combustion causes the membrane to expand and thereby pumps the fluid out of the adjacent pumping chamber. The first combustion-driven soft pump was developed by ETH Zurich.C.M. Schumacher, M. Loepfe, R. Fuhrer, R.N. Grass, and W.J. Stark, "3D printed lost-wax casted soft silicone monoblocks enable heart-inspired pumping by internal combustion," RSC Advances, Vol. 4, pp. 16039–16042, 2014.


Hydraulic ram pumps

A
hydraulic ram A hydraulic ram, or hydram, is a cyclic water pump powered by hydropower. It takes in water at one "hydraulic head" (pressure) and flow rate, and outputs water at a higher hydraulic head and lower flow rate. The device uses the water hammer ef ...
is a water pump powered by hydropower. It takes in water at relatively low pressure and high flow-rate and outputs water at a higher hydraulic-head and lower flow-rate. The device uses the
water hammer Hydraulic shock (colloquial: water hammer; fluid hammer) is a pressure surge or wave caused when a fluid in motion, usually a liquid but sometimes also a gas is forced to stop or change direction suddenly; a momentum change. This phenomenon com ...
effect to develop pressure that lifts a portion of the input water that powers the pump to a point higher than where the water started. The hydraulic ram is sometimes used in remote areas, where there is both a source of low-head hydropower, and a need for pumping water to a destination higher in elevation than the source. In this situation, the ram is often useful, since it requires no outside source of power other than the kinetic energy of flowing water.


Velocity pumps

Rotodynamic pumps (or dynamic pumps) are a type of velocity pump in which
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
is added to the fluid by increasing the flow velocity. This increase in energy is converted to a gain in potential energy (pressure) when the velocity is reduced prior to or as the flow exits the pump into the discharge pipe. This conversion of kinetic energy to pressure is explained by the ''
First law of thermodynamics The first law of thermodynamics is a formulation of the law of conservation of energy, adapted for thermodynamic processes. It distinguishes in principle two forms of energy transfer, heat and thermodynamic work for a system of a constant amou ...
'', or more specifically by ''
Bernoulli's principle In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after the Swiss mathematici ...
''. Dynamic pumps can be further subdivided according to the means in which the velocity gain is achieved. These types of pumps have a number of characteristics: # Continuous energy # Conversion of added energy to increase in
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
(increase in velocity) # Conversion of increased velocity (kinetic energy) to an increase in pressure head A practical difference between dynamic and positive-displacement pumps is how they operate under closed valve conditions. Positive-displacement pumps physically displace fluid, so closing a valve downstream of a positive-displacement pump produces a continual pressure build up that can cause mechanical failure of pipeline or pump. Dynamic pumps differ in that they can be safely operated under closed valve conditions (for short periods of time).


Radial-flow pumps

Such a pump is also referred to as a
centrifugal pump Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor. They are a sub-class of dynamic ...
. The fluid enters along the axis or center, is accelerated by the impeller and exits at right angles to the shaft (radially); an example is the centrifugal fan, which is commonly used to implement a
vacuum cleaner A vacuum cleaner, also known simply as a vacuum or a hoover, is a device that causes suction in order to remove dirt from floors, upholstery, draperies, and other surfaces. It is generally electrically driven. The dirt is collected by either a ...
. Another type of radial-flow pump is a vortex pump. The liquid in them moves in tangential direction around the working wheel. The conversion from the
mechanical energy In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is ...
of motor into the potential energy of flow comes by means of multiple whirls, which are excited by the impeller in the working channel of the pump. Generally, a radial-flow pump operates at higher pressures and lower flow rates than an axial- or a mixed-flow pump.


Axial-flow pumps

These are also referred to as All fluid pumps. The fluid is pushed outward or inward to move fluid axially. They operate at much lower pressures and higher flow rates than radial-flow (centrifugal) pumps. Axial-flow pumps cannot be run up to speed without special precaution. If at a low flow rate, the total head rise and high torque associated with this pipe would mean that the starting torque would have to become a function of acceleration for the whole mass of liquid in the pipe system. If there is a large amount of fluid in the system, accelerate the pump slowly. Mixed-flow pumps function as a compromise between radial and axial-flow pumps. The fluid experiences both radial acceleration and lift and exits the impeller somewhere between 0 and 90 degrees from the axial direction. As a consequence mixed-flow pumps operate at higher pressures than axial-flow pumps while delivering higher discharges than radial-flow pumps. The exit angle of the flow dictates the pressure head-discharge characteristic in relation to radial and mixed-flow.


Regenerative turbine pumps

Also known as drag, friction,
liquid-ring pump A liquid-ring pump is a rotating positive-displacement gas pump, with liquid under centrifugal force acting as a seal. They are typically used as a vacuum pump, but can also be used as a gas compressor. The function of a liquid-ring pump is si ...
, peripheral, traction, turbulence, or vortex pumps, regenerative turbine pumps are class of rotodynamic pump that operates at high head pressures, typically . The pump has an impeller with a number of vanes or paddles which spins in a cavity. The suction port and pressure ports are located at the perimeter of the cavity and are isolated by a barrier called a stripper, which allows only the tip channel (fluid between the blades) to recirculate, and forces any fluid in the side channel (fluid in the cavity outside of the blades) through the pressure port. In a regenerative turbine pump, as fluid spirals repeatedly from a vane into the side channel and back to the next vane, kinetic energy is imparted to the periphery, thus pressure builds with each spiral, in a manner similar to a regenerative blower. As regenerative turbine pumps cannot become
vapor lock Vapor lock is a problem caused by liquid fuel changing state to gas while still in the fuel delivery system of gasoline-fueled internal combustion engines. This disrupts the operation of the fuel pump, causing loss of feed pressure to the carbur ...
ed, they are commonly applied to volatile, hot, or cryogenic fluid transport. However, as tolerances are typically tight, they are vulnerable to solids or particles causing jamming or rapid wear. Efficiency is typically low, and pressure and power consumption typically decrease with flow. Additionally, pumping direction can be reversed by reversing direction of spin.


Side-channel pumps

A side-channel pump has a suction disk, an impeller, and a discharge disk.


Eductor-jet pump

This uses a jet, often of steam, to create a low pressure. This low pressure sucks in fluid and propels it into a higher pressure region.


Gravity pumps

Gravity pumps include the '' syphon'' and ''
Heron's fountain Heron's fountain is a hydraulic machine invented by the 1st century AD inventor, mathematician, and physicist Heron of Alexandria (also known as Hero of Alexandria). Heron studied the pressure of air and steam, described the first steam engin ...
''. The ''
hydraulic ram A hydraulic ram, or hydram, is a cyclic water pump powered by hydropower. It takes in water at one "hydraulic head" (pressure) and flow rate, and outputs water at a higher hydraulic head and lower flow rate. The device uses the water hammer ef ...
'' is also sometimes called a gravity pump; in a gravity pump the water is lifted by gravitational force and so called gravity pump.


Steam pumps

Steam pumps have been for a long time mainly of historical interest. They include any type of pump powered by a steam engine and also
pistonless pump A pistonless pump is a type of pump designed to move fluids without any moving parts other than three chamber valves. The pump contains a chamber which has a valved inlet from the fluid to be pumped, a valved outlet – both of these at the bott ...
s such as
Thomas Savery Thomas Savery (; c. 1650 – 15 May 1715) was an English inventor and engineer. He invented the first commercially used steam-powered device, a steam pump which is often referred to as the "Savery engine". Savery's steam pump was a revolutiona ...
's or the
Pulsometer steam pump The Pulsometer steam pump is a pistonless pump which was patented in 1872 by American Charles Henry Hall. In 1875 a British engineer bought the patent rights of the Pulsometer and it was introduced to the market soon thereafter. The invention ...
. Recently there has been a resurgence of interest in low power solar steam pumps for use in
smallholder A smallholding or smallholder is a small farm operating under a small-scale agriculture model. Definitions vary widely for what constitutes a smallholder or small-scale farm, including factors such as size, food production technique or technology ...
irrigation in developing countries. Previously small steam engines have not been viable because of escalating inefficiencies as vapour engines decrease in size. However the use of modern engineering materials coupled with alternative engine configurations has meant that these types of system are now a cost-effective opportunity.


Valveless pumps

Valveless pumping assists in fluid transport in various biomedical and engineering systems. In a valveless pumping system, no valves (or physical occlusions) are present to regulate the flow direction. The fluid pumping efficiency of a valveless system, however, is not necessarily lower than that having valves. In fact, many fluid-dynamical systems in nature and engineering more or less rely upon valveless pumping to transport the working fluids therein. For instance, blood circulation in the cardiovascular system is maintained to some extent even when the heart's valves fail. Meanwhile, the embryonic vertebrate heart begins pumping blood long before the development of discernible chambers and valves. Similar to blood circulation in one direction, bird respiratory systems pump air in one direction in rigid lungs, but without any physiological valve. In
microfluidics Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale (typically sub-millimeter) at which surface forces dominate volumetric forces. It is a multidisciplinary field th ...
, valveless impedance pumps have been fabricated, and are expected to be particularly suitable for handling sensitive biofluids. Ink jet printers operating on the
piezoelectric transducer Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word '' ...
principle also use valveless pumping. The pump chamber is emptied through the printing jet due to reduced flow impedance in that direction and refilled by
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
.


Pump repairs

Examining pump repair records and
mean time between failures Mean time between failures (MTBF) is the predicted elapsed time between inherent failures of a mechanical or electronic system during normal system operation. MTBF can be calculated as the arithmetic mean (average) time between failures of a system ...
(MTBF) is of great importance to responsible and conscientious pump users. In view of that fact, the preface to the 2006 Pump User's Handbook alludes to "pump failure" statistics. For the sake of convenience, these failure statistics often are translated into MTBF (in this case, installed life before failure).Pump Statistics Should Shape Strategies
Mt-online.com 1 October 2008. Retrieved 24 September 2014.
In early 2005, Gordon Buck,
John Crane Inc. John Crane is an American company, now a subsidiary of Smiths Group and provider of engineered products and services including mechanical seals, couplings, hydro-dynamic bearings, seal support systems, filtration systems and artificial lift. The c ...
’s chief engineer for field operations in Baton Rouge, Louisiana, examined the repair records for a number of refinery and chemical plants to obtain meaningful reliability data for centrifugal pumps. A total of 15 operating plants having nearly 15,000 pumps were included in the survey. The smallest of these plants had about 100 pumps; several plants had over 2000. All facilities were located in the United States. In addition, considered as "new", others as "renewed" and still others as "established". Many of these plants—but not all—had an alliance arrangement with John Crane. In some cases, the alliance contract included having a John Crane Inc. technician or engineer on-site to coordinate various aspects of the program. Not all plants are refineries, however, and different results occur elsewhere. In chemical plants, pumps have historically been "throw-away" items as chemical attack limits life. Things have improved in recent years, but the somewhat restricted space available in "old" DIN and ASME-standardized stuffing boxes places limits on the type of seal that fits. Unless the pump user upgrades the seal chamber, the pump only accommodates more compact and simple versions. Without this upgrading, lifetimes in chemical installations are generally around 50 to 60 percent of the refinery values. Unscheduled maintenance is often one of the most significant costs of ownership, and failures of mechanical seals and bearings are among the major causes. Keep in mind the potential value of selecting pumps that cost more initially, but last much longer between repairs. The MTBF of a better pump may be one to four years longer than that of its non-upgraded counterpart. Consider that published average values of avoided pump failures range from US$2600 to US$12,000. This does not include lost opportunity costs. One pump fire occurs per 1000 failures. Having fewer pump failures means having fewer destructive pump fires. As has been noted, a typical pump failure, based on actual year 2002 reports, costs US$5,000 on average. This includes costs for material, parts, labor and overhead. Extending a pump's MTBF from 12 to 18 months would save US$1,667 per year — which might be greater than the cost to upgrade the centrifugal pump's reliability.Submersible slurry pumps in high demand
Engineeringnews.co.za. Retrieved on 2011-05-25.


Applications

Pumps are used throughout society for a variety of purposes. Early applications includes the use of the
windmill A windmill is a structure that converts wind power into rotational energy using vanes called sails or blades, specifically to mill grain (gristmills), but the term is also extended to windpumps, wind turbines, and other applications, in some ...
or
watermill A watermill or water mill is a mill that uses hydropower. It is a structure that uses a water wheel or water turbine to drive a mechanical process such as milling (grinding), rolling, or hammering. Such processes are needed in the production of ...
to pump water. Today, the pump is used for irrigation,
water supply Water supply is the provision of water by public utilities, commercial organisations, community endeavors or by individuals, usually via a system of pumps and pipes. Public water supply systems are crucial to properly functioning societies. Thes ...
, gasoline supply,
air conditioning Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
systems,
refrigeration The term refrigeration refers to the process of removing heat from an enclosed space or substance for the purpose of lowering the temperature.International Dictionary of Refrigeration, http://dictionary.iifiir.org/search.phpASHRAE Terminology, ht ...
(usually called a compressor), chemical movement, sewage movement, flood control, marine services, etc. Because of the wide variety of applications, pumps have a plethora of shapes and sizes: from very large to very small, from handling gas to handling liquid, from high pressure to low pressure, and from high volume to low volume.


Priming a pump

Typically, a liquid pump can't simply draw air. The feed line of the pump and the internal body surrounding the pumping mechanism must first be filled with the liquid that requires pumping: An operator must introduce liquid into the system to initiate the pumping. This is called ''priming'' the pump. Loss of prime is usually due to ingestion of air into the pump. The clearances and displacement ratios in pumps for liquids, whether thin or more viscous, usually cannot displace air due to its compressibility. This is the case with most velocity (rotodynamic) pumps — for example, centrifugal pumps. For such pumps, the position of the pump should always be lower than the suction point, if not the pump should be manually filled with liquid or a secondary pump should be used until all air is removed from the suction line and the pump casing. Positive–displacement pumps, however, tend to have sufficiently tight sealing between the moving parts and the casing or housing of the pump that they can be described as ''self-priming''. Such pumps can also serve as ''priming pumps'', so-called when they are used to fulfill that need for other pumps in lieu of action taken by a human operator.


Pumps as public water supplies

One sort of pump once common worldwide was a hand-powered water pump, or 'pitcher pump'. It was commonly installed over community
water well A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. T ...
s in the days before piped water supplies. In parts of the British Isles, it was often called ''the parish pump''. Though such community pumps are no longer common, people still used the expression ''parish pump'' to describe a place or forum where matters of local interest are discussed. Because water from pitcher pumps is drawn directly from the soil, it is more prone to contamination. If such water is not filtered and purified, consumption of it might lead to gastrointestinal or other water-borne diseases. A notorious case is the 1854 Broad Street cholera outbreak. At the time it was not known how cholera was transmitted, but physician John Snow suspected contaminated water and had the handle of the public pump he suspected removed; the outbreak then subsided. Modern hand-operated community pumps are considered the most sustainable low-cost option for safe water supply in resource-poor settings, often in rural areas in developing countries. A hand pump opens access to deeper groundwater that is often not polluted and also improves the safety of a well by protecting the water source from contaminated buckets. Pumps such as the Afridev pump are designed to be cheap to build and install, and easy to maintain with simple parts. However, scarcity of spare parts for these type of pumps in some regions of Africa has diminished their utility for these areas.


Sealing multiphase pumping applications

Multiphase pumping applications, also referred to as tri-phase, have grown due to increased oil drilling activity. In addition, the economics of multiphase production is attractive to upstream operations as it leads to simpler, smaller in-field installations, reduced equipment costs and improved production rates. In essence, the multiphase pump can accommodate all fluid stream properties with one piece of equipment, which has a smaller footprint. Often, two smaller multiphase pumps are installed in series rather than having just one massive pump.


Types and features of multiphase pumps


=Helico-axial (centrifugal)

= A rotodynamic pump with one single shaft that requires two mechanical seals, this pump uses an open-type axial impeller. It is often called a ''Poseidon pump'', and can be described as a cross between an axial compressor and a centrifugal pump.


=Twin-screw (positive-displacement)

= The twin-screw pump is constructed of two inter-meshing screws that move the pumped fluid. Twin screw pumps are often used when pumping conditions contain high gas volume fractions and fluctuating inlet conditions. Four mechanical seals are required to seal the two shafts.


=Progressive cavity (positive-displacement)

= When the pumping application is not suited to a centrifugal pump, a progressive cavity pump is used instead. Progressive cavity pumps are single-screw types typically used in shallow wells or at the surface. This pump is mainly used on surface applications where the pumped fluid may contain a considerable amount of solids such as sand and dirt. The volumetric efficiency and mechanical efficiency of a progressive cavity pump increases as the viscosity of the liquid does.


=Electric submersible (centrifugal)

= These pumps are basically multistage centrifugal pumps and are widely used in oil well applications as a method for artificial lift. These pumps are usually specified when the pumped fluid is mainly liquid. ''Buffer tank'' A buffer tank is often installed upstream of the pump suction nozzle in case of a
slug flow In fluid mechanics, slug flow in liquid–gas two-phase flow is a type of flow pattern. Lighter, faster moving ''continuous'' fluid which contains gas bubbles - pushes along a ''disperse'' gas bubble. Pressure oscillations within piping can be cau ...
. The buffer tank breaks the energy of the liquid slug, smooths any fluctuations in the incoming flow and acts as a sand trap. As the name indicates, multiphase pumps and their mechanical seals can encounter a large variation in service conditions such as changing process fluid composition, temperature variations, high and low operating pressures and exposure to abrasive/erosive media. The challenge is selecting the appropriate mechanical seal arrangement and support system to ensure maximized seal life and its overall effectiveness.Sealing Multiphase Pumping Applications , Seals
Pump-zone.com. Retrieved on 2011-05-25.


Specifications

Pumps are commonly rated by
horsepower Horsepower (hp) is a unit of measurement of power, or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower. Two common definitions used today are t ...
, volumetric flow rate, outlet
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
in metres (or feet) of head, inlet suction in suction feet (or metres) of head. The head can be simplified as the number of feet or metres the pump can raise or lower a column of water at
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
. From an initial design point of view, engineers often use a quantity termed the
specific speed Specific speed ''N's'', is used to characterize turbomachinery speed. Common commercial and industrial practices use dimensioned versions which are of equal utility. Specific speed is most commonly used in pump applications to define the su ...
to identify the most suitable pump type for a particular combination of flow rate and head.


Pumping power

The power imparted into a fluid increases the energy of the fluid per unit volume. Thus the power relationship is between the conversion of the mechanical energy of the pump mechanism and the fluid elements within the pump. In general, this is governed by a series of simultaneous differential equations, known as the
Navier–Stokes equations In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
. However a more simple equation relating only the different energies in the fluid, known as
Bernoulli's equation In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after the Swiss mathematic ...
can be used. Hence the power, P, required by the pump: : P = \frac where Δp is the change in
total pressure In physics, the term total pressure may indicate two different quantities, both having the dimensions of a pressure: For compressible flow the isentropic relations can be used (also valid for incompressible flow): : p_t=p\left(1+\fracM^2\right)^ ...
between the inlet and outlet (in Pa), and Q, the volume flow-rate of the fluid is given in m3/s. The total pressure may have gravitational,
static pressure In fluid mechanics the term static pressure has several uses: * In the design and operation of aircraft, ''static pressure'' is the air pressure in the aircraft's static pressure system. * In fluid dynamics, many authors use the term ''static pres ...
and
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
components; i.e. energy is distributed between change in the fluid's
gravitational potential energy Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (conver ...
(going up or down hill), change in velocity, or change in static pressure. η is the pump efficiency, and may be given by the manufacturer's information, such as in the form of a pump curve, and is typically derived from either fluid dynamics simulation (i.e. solutions to the Navier–Stokes for the particular pump geometry), or by testing. The efficiency of the pump depends upon the pump's configuration and operating conditions (such as rotational speed, fluid density and viscosity etc.) : \Delta p = +\Delta z g+ For a typical "pumping" configuration, the work is imparted on the fluid, and is thus positive. For the fluid imparting the work on the pump (i.e. a
turbine A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced by a turbine can be used for generating ...
), the work is negative. Power required to drive the pump is determined by dividing the output power by the pump efficiency. Furthermore, this definition encompasses pumps with no moving parts, such as a siphon.


Efficiency

Pump efficiency is defined as the ratio of the power imparted on the fluid by the pump in relation to the power supplied to drive the pump. Its value is not fixed for a given pump, efficiency is a function of the discharge and therefore also operating head. For centrifugal pumps, the efficiency tends to increase with flow rate up to a point midway through the operating range (peak efficiency or Best Efficiency Point (BEP) ) and then declines as flow rates rise further. Pump performance data such as this is usually supplied by the manufacturer before pump selection. Pump efficiencies tend to decline over time due to wear (e.g. increasing clearances as impellers reduce in size). When a system includes a centrifugal pump, an important design issue is matching the ''head loss-flow characteristic'' with the pump so that it operates at or close to the point of its maximum efficiency. Pump efficiency is an important aspect and pumps should be regularly tested. Thermodynamic pump testing is one method.


Minimum flow protection

Most large pumps have a minimum flow requirement below which the pump may be damaged by overheating, impeller wear, vibration, seal failure, drive shaft damage or poor performance. A minimum flow protection system ensures that the pump is not operated below the minimum flow rate. The system protects the pump even if it is shut-in or dead-headed, that is, if the discharge line is completely closed. The simplest minimum flow system is a pipe running from the pump discharge line back to the suction line. This line is fitted with an
orifice plate An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow (in the latter two cases it is often called a '). Description An orifice plate is a thin plate with a hole in it, which is usually placed in ...
sized to allow the pump minimum flow to pass. The arrangement ensures that the minimum flow is maintained, although it is wasteful as it recycles fluid even when the flow through the pump exceeds the minimum flow. A more sophisticated, but more costly, system (see diagram) comprises a flow measuring device (FE) in the pump discharge which provides a signal into a flow controller (FIC) which actuates a
flow control valve A flow control valve regulates the flow or pressure of a fluid. Control valves normally respond to signals generated by independent devices such as flow meters or temperature gauges. Operation Control valves are normally fitted with actuators an ...
(FCV) in the recycle line. If the measured flow exceeds the minimum flow then the FCV is closed. If the measured flow falls below the minimum flow the FCV opens to maintain the minimum flowrate. As the fluids are recycled the
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
of the pump increases the temperature of the fluid. For many pumps this added heat energy is dissipated through the pipework. However, for large industrial pumps, such as oil pipeline pumps, a recycle cooler is provided in the recycle line to cool the fluids to the normal suction temperature.Shell, ''Shearwater P&IDs'' dated 1997 Alternatively the recycled fluids may be returned to upstream of the export cooler in an
oil refinery An oil refinery or petroleum refinery is an industrial process plant where petroleum (crude oil) is transformed and refined into useful products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, lique ...
, oil terminal, or offshore installation.


References


Further reading

* Australian Pump Manufacturers' Association. ''Australian Pump Technical Handbook'', 3rd edition. Canberra: Australian Pump Manufacturers' Association, 1987. . * Hicks, Tyler G. and Theodore W. Edwards. ''Pump Application Engineering''. McGraw-Hill Book Company.1971. * * Robbins, L. B
"Homemade Water Pressure Systems"
'' Popular Science'', February 1919, pages 83–84. Article about how a homeowner can easily build a pressurized home water system that does not use electricity. {{Authority control Ancient inventions