Pistonless Pump
   HOME
*





Pistonless Pump
A pistonless pump is a type of pump designed to move fluids without any moving parts other than three chamber valves. The pump contains a chamber which has a valved inlet from the fluid to be pumped, a valved outlet – both of these at the bottom of the pump, and a pressurant inlet at the top of the pump. A pressurant is used, such as steam or pressurized helium, to drive the fluid through the pump. Introduction NASA have developed a low-cost rocket-fuel pump which has comparable performance to a turbopump at 80–90% lower cost. Perhaps the most difficult barrier to entry in the liquid rocket business is the turbopump. A turbopump design requires a large engineering effort and is expensive to manufacture and test. Starting a turbopump-fed rocket engine is a complex process, requiring a careful synchronisation of many valves and subsystems. In fact, Beal aerospace tried to avoid the issue entirely by building a huge pressure feed booster. Their booster never flew, but the engine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moving Parts
Machines include both fixed and moving parts. The moving parts have controlled and constrained motions. Moving parts are machine components excluding any moving fluids, such as fuel, coolant or hydraulic fluid. Moving parts also do not include any mechanical locks, switches, nuts and bolts, screw caps for bottles etc. A system with no moving parts is described as " solid state". Mechanical efficiency and wear The amount of moving parts in a machine is a factor in its mechanical efficiency. The greater the number of moving parts, the greater the amount of energy lost to heat by friction between those parts. For example, in a modern automobile engine, roughly 7% of the total power obtained from burning the engine's fuel is lost to friction between the engine's moving parts. Conversely, the fewer the number of moving parts, the greater the efficiency. Machines with no moving parts at all can be very efficient. An electrical transformer, for example, has no moving parts, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turbopump
A turbopump is a propellant pump with two main components: a rotodynamic pump and a driving gas turbine, usually both mounted on the same shaft, or sometimes geared together. They were initially developed in Germany in the early 1940s. The purpose of a turbopump is to produce a high-pressure fluid for feeding a combustion chamber or other use. There are two types of turbopumps: a centrifugal pump, where the pumping is done by throwing fluid outward at high speed, or an axial-flow pump, where alternating rotating and static blades progressively raise the pressure of a fluid. Axial-flow pumps have small diameters but give relatively modest pressure increases. Although multiple compression stages are needed, axial flow pumps work well with low-density fluids. Centrifugal pumps are far more powerful for high-density fluids but require large diameters for low-density fluids. History Early development High-pressure pumps for larger missiles had been discussed by rocket pioneers su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rocket Engines
A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles. Compared to other types of jet engine, rocket engines are the lightest and have the highest thrust, but are the least propellant-efficient (they have the lowest specific impulse). The ideal exhaust is hydrogen, the lightest of all elements, but chemical rockets produce a mix of heavier species, reducing the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thomas Savery
Thomas Savery (; c. 1650 – 15 May 1715) was an English inventor and engineer. He invented the first commercially used steam-powered device, a steam pump which is often referred to as the "Savery engine". Savery's steam pump was a revolutionary method of pumping water, which solved the problem of mine drainage and made widespread public water supply practicable. Career Thomas Savery was born at the manor house of Shilstone, near Modbury, Devon. He became a military engineer, rising to the rank of captain by 1702, and spent his free time performing experiments in mechanics. In 1696 he took out a patent for a machine for polishing glass or marble and another for "rowing of ships with greater ease and expedition than hitherto been done by any other" which involved paddle-wheels driven by a capstan and which was dismissed by the Admiralty following a negative report by the Surveyor of the Navy, Edmund Dummer. Savery also worked for the Sick and Hurt Commissioners, contractin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pulsometer Steam Pump
The Pulsometer steam pump is a pistonless pump which was patented in 1872 by American Charles Henry Hall. In 1875 a British engineer bought the patent rights of the Pulsometer and it was introduced to the market soon thereafter. The invention was inspired by the Savery steam pump invented by Thomas Savery. Around the turn of the century, it was a popular and effective pump for quarry pumping. Construction and operation This extremely simple pump was made of cast iron, and had no pistons, rods, cylinders, cranks, or flywheels. It operated by the direct action of steam on water. The mechanism consisted of two chambers. As the steam condensed in one chamber, it acted as a suction pump, while in the other chamber, steam was introduced under pressure and so it acted as a force pump. At the end of every stroke, a ball valve consisting of a small brass ball moved slightly, causing the two chambers to swap functions from suction-pump to force-pump and vice versa. The result was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydraulic Ram
A hydraulic ram, or hydram, is a cyclic water pump powered by hydropower. It takes in water at one "hydraulic head" (pressure) and flow rate, and outputs water at a higher hydraulic head and lower flow rate. The device uses the water hammer effect to develop pressure that allows a portion of the input water that powers the pump to be lifted to a point higher than where the water originally started. The hydraulic ram is sometimes used in remote areas, where there is both a source of low-head hydropower and a need for pumping water to a destination higher in elevation than the source. In this situation, the ram is often useful, since it requires no outside source of power other than the kinetic energy of flowing water. History The Alhambra, built by Nasrid Sultan Ibn al-Ahmar of Granada beginning AD1238, used a hydram to raise water. Through a first reservoir, filled by a channel from the Darro River, water emptied via a large vertical channel into a second reservoir bene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Pump
A Cyclic pump is an apparatus which moves a fluid in a periodic uni-directional direction from one containment system to another while overcoming static conditions that would, without intervention, not move. The intervention predicated by the pump alters pressures, volumes and sometimes temperatures of fluids (gaseous, liquid, colloidal, plasmic, etc.) in such a way that the fluids are transported to other chambers or enclosures (including pipes), thus "flowing" in a consistent direction, usually having characteristics of pulsation (as is the case with the Human heart) or of uniform motion (as is the case with an Automobile motor oil pump). Cyclic pumps are generally incorporated into machines to deal with all sorts of fluids associated with that machine's functionality. References See also * Water hammer * Hydraulic ram * Fluid dynamics * Switched-mode power supply * Boost converter * Buck converter A buck converter (step-down converter) is a DC-to-DC power converter whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pulsometer Pump
The Pulsometer steam pump is a pistonless pump which was patented in 1872 by American Charles Henry Hall. In 1875 a British engineer bought the patent rights of the Pulsometer and it was introduced to the market soon thereafter. The invention was inspired by the Savery steam pump invented by Thomas Savery. Around the turn of the century, it was a popular and effective pump for quarry pumping. Construction and operation This extremely simple pump was made of cast iron, and had no pistons, rods, cylinders, cranks, or flywheels. It operated by the direct action of steam on water. The mechanism consisted of two chambers. As the steam condensed in one chamber, it acted as a suction pump, while in the other chamber, steam was introduced under pressure and so it acted as a force pump. At the end of every stroke, a ball valve consisting of a small brass ball moved slightly, causing the two chambers to swap functions from suction-pump to force-pump and vice versa. The result was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]