Visible Spectrum
   HOME

TheInfoList



OR:

The visible spectrum is the
band Band or BAND may refer to: Places *Bánd, a village in Hungary *Band, Iran, a village in Urmia County, West Azerbaijan Province, Iran *Band, Mureș, a commune in Romania * Band-e Majid Khan, a village in Bukan County, West Azerbaijan Province, I ...
of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from ...
that is
visible Visibility, in meteorology, is a measure of the distance at which an object or light can be seen. Visibility may also refer to: * A measure of turbidity in water quality control * Interferometric visibility, which quantifies interference contrast ...
to the
human eye The human eye is a sensory organ, part of the sensory nervous system, that reacts to visible light and allows humans to use visual information for various purposes including seeing things, keeping balance, and maintaining circadian rhythm. ...
.
Electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
in this range of
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s is called ''
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
'' (or simply light). The optical spectrum is sometimes considered to be the same as the visible spectrum, but some authors define the term more broadly, to include the
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
and
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
parts of the electromagnetic spectrum as well, known collectively as ''
optical radiation Optical radiation is part of the electromagnetic spectrum. It is subdivided into ultraviolet radiation (UV), the spectrum of light visible for man (VIS) and infrared radiation Infrared (IR), sometimes called infrared light, is electromagnetic ...
''. A typical
human eye The human eye is a sensory organ, part of the sensory nervous system, that reacts to visible light and allows humans to use visual information for various purposes including seeing things, keeping balance, and maintaining circadian rhythm. ...
will respond to wavelengths from about 380 to about 750
nanometers 330px, Different lengths as in respect to the molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
. In terms of frequency, this corresponds to a band in the vicinity of 400–790  terahertz. These boundaries are not sharply defined and may vary per individual. Under optimal conditions these limits of human perception can extend to 310 nm (ultraviolet) and 1100 nm (near infrared). The spectrum does not contain all the
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
s that the human
visual system The visual system comprises the sensory organ (the eye) and parts of the central nervous system (the retina containing photoreceptor cells, the optic nerve, the optic tract and the visual cortex) which gives organisms the sense of sight (the a ...
can distinguish. '' Unsaturated colors'' such as
pink Pink is the color of a namesake flower that is a pale tint of red. It was first used as a color name in the late 17th century. According to surveys in Europe and the United States, pink is the color most often associated with charm, politeness, ...
, or
purple Purple is any of a variety of colors with hue between red and blue. In the RGB color model used in computer and television screens, purples are produced by mixing red and blue light. In the RYB color model historically used by painters, pu ...
variations like
magenta Magenta () is a color that is variously defined as pinkish- purplish-red, reddish-purplish-pink or mauvish-crimson. On color wheels of the RGB (additive) and CMY (subtractive) color models, it is located exactly midway between red and blue. I ...
, for example, are absent because they can only be made from a mix of multiple wavelengths. Colors containing only one wavelength are also called ''pure colors'' or
spectral color A spectral color is a color that is evoked by ''monochromatic light'', i.e. either a single wavelength of light in the visible spectrum, or by a relatively narrow band of wavelengths (e.g. lasers). Every wavelength of visible light is percei ...
s. Visible wavelengths pass largely unattenuated through the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
via the "
optical window The optical window is a range of wavelengths that are not blocked by the earth's atmosphere. The window runs from around 300 nanometers ( ultraviolet-B) up into the range the human eye can detect, roughly 400–700 nm and continues up to approxi ...
" region of the electromagnetic spectrum. An example of this phenomenon is when clean air scatters blue light more than red light, and so the midday sky appears blue (apart from the area around the Sun which appears white because the light is not scattered as much). The optical window is also referred to as the "visible window" because it overlaps the human visible response spectrum. The
near infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
(NIR) window lies just out of the human vision, as well as the medium wavelength infrared (MWIR) window, and the long-wavelength or far-infrared (LWIR or FIR) window, although other animals may perceive them.


Spectral colors

Colors that can be produced by visible light of a narrow band of wavelengths (
monochromatic light {{Short description, Electromagnetic radiation with a single constant frequency In physics, monochromatic radiation is electromagnetic radiation with a single constant frequency. When that frequency is part of the visible spectrum (or near it) the ...
) are called pure spectral colors. The various color ranges indicated in the illustration are an approximation: The spectrum is continuous, with no clear boundaries between one color and the next.


History

In the 13th century,
Roger Bacon Roger Bacon (; la, Rogerus or ', also '' Rogerus''; ), also known by the scholastic accolade ''Doctor Mirabilis'', was a medieval English philosopher and Franciscan friar who placed considerable emphasis on the study of nature through empiri ...
theorized that
rainbow A rainbow is a meteorological phenomenon that is caused by reflection, refraction and dispersion of light in water droplets resulting in a spectrum of light appearing in the sky. It takes the form of a multicoloured circular arc. Rainbows c ...
s were produced by a similar process to the passage of light through glass or crystal. In the 17th century,
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
discovered that prisms could disassemble and reassemble white light, and described the phenomenon in his book ''
Opticks ''Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light'' is a book by English natural philosopher Isaac Newton that was published in English in 1704 (a scholarly Latin translation appeared in 1706). (''Optick ...
''. He was the first to use the word ''spectrum'' (
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
for "appearance" or "apparition") in this sense in print in 1671 in describing his
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into Causality, cause-and-effect by demonstrating what outcome oc ...
s in
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
. Newton observed that, when a narrow beam of
sunlight Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when t ...
strikes the face of a glass
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
at an angle, some is reflected and some of the beam passes into and through the glass, emerging as different-colored bands. Newton hypothesized light to be made up of "corpuscles" (particles) of different colors, with the different colors of light moving at different speeds in transparent matter, red light moving more quickly than violet in glass. The result is that red light is bent (
refracted In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomeno ...
) less sharply than violet as it passes through the prism, creating a spectrum of colors. Newton originally divided the spectrum into six named colors:
red Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–740 nanometres. It is a primary color in the RGB color model and a secondar ...
,
orange Orange most often refers to: *Orange (fruit), the fruit of the tree species '' Citrus'' × ''sinensis'' ** Orange blossom, its fragrant flower *Orange (colour), from the color of an orange, occurs between red and yellow in the visible spectrum * ...
,
yellow Yellow is the color between green and orange on the spectrum of light. It is evoked by light with a dominant wavelength of roughly 575585 nm. It is a primary color in subtractive color systems, used in painting or color printing. In the R ...
,
green Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495570 Nanometre, nm. In subtractive color systems, used in painting and color printing, it is created by ...
,
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when obs ...
, and
violet Violet may refer to: Common meanings * Violet (color), a spectral color with wavelengths shorter than blue * One of a list of plants known as violet, particularly: ** ''Viola'' (plant), a genus of flowering plants Places United States * Viol ...
. He later added
indigo Indigo is a deep color close to the color wheel blue (a primary color in the RGB color space), as well as to some variants of ultramarine, based on the ancient dye of the same name. The word "indigo" comes from the Latin word ''indicum'', m ...
as the seventh color since he believed that seven was a perfect number as derived from the
ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic peri ...
sophists A sophist ( el, σοφιστής, sophistes) was a teacher in ancient Greece in the fifth and fourth centuries BC. Sophists specialized in one or more subject areas, such as philosophy, rhetoric, music, athletics, and mathematics. They taught ' ...
, of there being a connection between the colors, the musical notes, the known objects in the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
, and the days of the week. The human eye is relatively insensitive to indigo's frequencies, and some people who have otherwise-good vision cannot distinguish indigo from blue and violet. For this reason, some later commentators, including
Isaac Asimov yi, יצחק אזימאװ , birth_date = , birth_place = Petrovichi, Russian SFSR , spouse = , relatives = , children = 2 , death_date = , death_place = Manhattan, New York City, U.S. , nationality = Russian (1920–1922)Soviet (192 ...
, have suggested that indigo should not be regarded as a color in its own right but merely as a shade of blue or violet. Evidence indicates that what Newton meant by "indigo" and "blue" does not correspond to the modern meanings of those color words. Comparing Newton's observation of prismatic colors with a color image of the visible light spectrum shows that "indigo" corresponds to what is today called blue, whereas his "blue" corresponds to
cyan Cyan () is the color between green and blue on the visible spectrum of light. It is evoked by light with a predominant wavelength between 490 and 520 nm, between the wavelengths of green and blue. In the subtractive color system, or CMYK color ...
. In the 18th century,
Johann Wolfgang von Goethe Johann Wolfgang von Goethe (28 August 1749 – 22 March 1832) was a German poet, playwright, novelist, scientist, statesman, theatre director, and critic. His works include plays, poetry, literature, and aesthetic criticism, as well as trea ...
wrote about optical spectra in his ''
Theory of Colours ''Theory of Colours'' (german: Zur Farbenlehre, links=no) is a book by Johann Wolfgang von Goethe about the poet's views on the nature of colours and how these are perceived by humans. It was published in German in 1810 and in English in 1840. ...
''. Goethe used the word ''spectrum'' (''Spektrum'') to designate a ghostly optical
afterimage AfterImage is a Filipino rock band formed in 1986, best known for their songs "Habang May Buhay", "Next in Line", and "Mangarap Ka". They disbanded in 1997 and became active again in 2008 after they reunited and released their fourth studio album ...
, as did
Schopenhauer Arthur Schopenhauer ( , ; 22 February 1788 – 21 September 1860) was a German philosopher. He is best known for his 1818 work ''The World as Will and Representation'' (expanded in 1844), which characterizes the phenomenal world as the prod ...
in ''
On Vision and Colors ''On Vision and Colors'' (originally translated as ''On Vision and Colours''; german: Ueber das Sehn und die Farben) is a treatise by Arthur Schopenhauer that was published in May 1816 when the author was 28 years old. Schopenhauer had extensive d ...
''. Goethe argued that the continuous spectrum was a compound phenomenon. Where Newton narrowed the beam of light to isolate the phenomenon, Goethe observed that a wider aperture produces not a spectrum but rather reddish-yellow and blue-cyan edges with
white White is the lightest color and is achromatic (having no hue). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully reflect and scatter all the visible wavelengths of light. White on ...
between them. The spectrum appears only when these edges are close enough to overlap. In the early 19th century, the concept of the visible spectrum became more definite, as light outside the visible range was discovered and characterized by
William Herschel Frederick William Herschel (; german: Friedrich Wilhelm Herschel; 15 November 1738 – 25 August 1822) was a German-born British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline H ...
(
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
) and
Johann Wilhelm Ritter Johann Wilhelm Ritter (16 December 1776 – 23 January 1810). was a German chemist, physicist and philosopher. He was born in Samitz (Zamienice) near Haynau (Chojnów) in Silesia (then part of Prussia, since 1945 in Poland), and died in Munic ...
(
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
), Thomas Young,
Thomas Johann Seebeck Thomas Johann Seebeck (; 9 April 1770 – 10 December 1831) was a Baltic German physicist, who, in 1822, observed a relationship between heat and magnetism. Later, in 1823, Ørsted called this phenomenon thermoelectric effect. Seebeck was bor ...
, and others. Young was the first to measure the wavelengths of different colors of light, in 1802. The connection between the visible spectrum and
color vision Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different wavelengths (i.e., different spectral power distributions) independently of light intensity. Color perception is a part of ...
was explored by Thomas Young and
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Association, ...
in the early 19th century. Their theory of color vision correctly proposed that the eye uses three distinct receptors to perceive color.


Limits to visible range

The visible spectrum is limited to wavelengths that can both reach the retina and trigger
visual phototransduction Visual phototransduction is the sensory transduction process of the visual system by which light is detected to yield nerve impulses in the rod cells and cone cells in the retina of the eye in humans and other vertebrates. It relies on the visual c ...
(excite a visual opsin). Insensitivity to
UV light Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
is generally limited by transmission through the
lens A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
. Insensitivity to IR light is limited by the
spectral sensitivity Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characteristics o ...
functions of the visual opsins. The range is defined psychometrically by the
luminous efficiency function A luminous efficiency function or luminosity function represents the average spectral sensitivity of human visual perception of light. It is based on subjective judgements of which of a pair of different-colored lights is brighter, to describe ...
, which accounts for all of these factors. In humans, there is a separate function for each of two visual systems, one for
photopic vision Photopic vision is the vision of the eye under well-lit conditions (luminance levels from 10 to 108  cd/m2). In humans and many other animals, photopic vision allows color perception, mediated by cone cells, and a significantly higher visua ...
, used in daylight, which is mediated by
cone cells Cone cells, or cones, are photoreceptor cells in the retinas of vertebrate eyes including the human eye. They respond differently to light of different wavelengths, and the combination of their responses is responsible for color vision. Cones ...
, and one for
scotopic vision In the study of human visual perception, scotopic vision (or scotopia) is the vision of the eye under low-light conditions. The term comes from Greek ''skotos'', meaning "darkness", and ''-opia'', meaning "a condition of sight". In the human eye, ...
, used in dim light, which is mediated by
rod cells Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in per ...
. Each of these functions have different visible ranges. However, discussion on the visible range generally assumes photopic vision.


Atmospheric transmission

The visible range of most animals evolved to match the
optical window The optical window is a range of wavelengths that are not blocked by the earth's atmosphere. The window runs from around 300 nanometers ( ultraviolet-B) up into the range the human eye can detect, roughly 400–700 nm and continues up to approxi ...
, which is the range of light that can pass through the atmosphere. The ozone layer absorbs almost all UV light (below 315 nm). However, this only affects cosmic light (e.g.
sunlight Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when t ...
), not terrestrial light (e.g.
Bioluminescence Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some b ...
).


Ocular transmission

Before reaching the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
, light must first transmit through the
cornea The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical power ...
and
lens A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
. UVB light (< 315 nm) is filtered mostly by the cornea, and UVA light (315–400 nm) is filtered mostly by the lens. The lens also yellows with age, attenuating transmission most strongly at the blue part of the spectrum. This can cause
xanthopsia Xanthopsia is a color vision deficiency in which there is a dominantly yellow bias in vision due to a yellowing of the optical media of the eye. The most common causes are digoxin's inhibitory action on the sodium pump, and the development of catar ...
as well as a slight truncation of the short-wave (blue) limit of the visible spectrum. Subjects with
aphakia Aphakia is the absence of the lens of the eye, due to surgical removal, such as in cataract surgery, a perforating wound or ulcer, or congenital anomaly. It causes a loss of accommodation, high degree of farsightedness (hyperopia), and a deep a ...
are missing a lens, so UVA light can reach the retina and excite the visual opsins; this expands the visible range and may also lead to
cyanopsia ''Cyanopsia'' is a medical term for seeing everything tinted with blue. It is also referred to as ''blue vision''. Cyanopsia often occurs for a few days, weeks, or months after removal of a cataract from the eye. Cyanopsia also sometimes occurs a ...
.


Opsin absorption

Each opsin has a
spectral sensitivity Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characteristics o ...
function, which defines how likely it is to absorb a photon of each wavelength. The luminous efficiency function is approximately the superposition of the contributing visual opsins. Variance in the position of the individual opsin spectral sensitivity functions therefore affects the luminous efficiency function and the visible range. For example, the long-wave (red) limit changes proportionally to the position of the L-opsin. The positions are defined by the peak wavelength (wavelength of highest sensitivity), so as the L-opsin peak wavelength blue shifts by 10 nm, the long-wave limit of the visible spectrum also shifts 10 nm. Large deviations of the L-opsin peak wavelength lead to a form of
color blindness Color blindness or color vision deficiency (CVD) is the decreased ability to color vision, see color or differences in color. It can impair tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights. Color blindness may ...
called protanomaly and a missing L-opsin (
protanopia Color blindness or color vision deficiency (CVD) is the decreased ability to see color or differences in color. It can impair tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights. Color blindness may make some aca ...
) shortens the visible spectrum by about 30 nm at the long-wave limit. Forms of color blindness affecting the M-opsin and S-opsin do not significantly affect the luminous efficiency function nor the limits of the visible spectrum.


Different definitions

Regardless of actual physical and biological variance, the definition of the limits is not standard and will change depending on the industry. For example, some industries may be concerned with practical limits, so would conservatively report 420–680 nm, while others may be concerned with
psychometrics Psychometrics is a field of study within psychology concerned with the theory and technique of measurement. Psychometrics generally refers to specialized fields within psychology and education devoted to testing, measurement, assessment, and ...
and achieving the broadest spectrum would liberally report 380–750, or even 380–800 nm. The luminous efficiency function in the NIR does not have a hard cutoff, but rather an exponential decay, such that the function's value (or vision sensitivity) at 1,050 nm is about 109 times weaker than at 700 nm; much higher intensity is therefore required to perceive 1,050 nm light than 700 nm light.


Vision outside the visible spectrum

Under ideal laboratory conditions, subjects may perceive infrared light up to at least 1,064 nm. While 1,050 nm NIR light can evoke red, suggesting direct absorption by the L-opsin, there are also reports that pulsed NIR lasers can evoke green, which suggests
two-photon absorption Two-photon absorption (TPA or 2PA) or two-photon excitation or non-linear absorption is the simultaneous absorption of two photons of identical or different frequencies in order to excite a molecule from one state (usually the ground state) to a hi ...
may be enabling extended NIR sensitivity. Similarly, young subjects may perceive ultraviolet wavelengths down to about 310–313 nm, but detection of light below 380 nm may be due to
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
of the ocular media, rather than direct absorption of UV light by the opsins. As UVA light is absorbed by the ocular media (lens and cornea), it may fluoresce and be released at a lower energy (longer wavelength) that can then be absorbed by the opsins. For example, when the lens absorbs 350 nm light, the fluorescence emission spectrum is centered on 440 nm.


Non-visual light detection

In addition to the photopic and scotopic systems, humans have other systems for detecting light that do not contribute to the primary
visual system The visual system comprises the sensory organ (the eye) and parts of the central nervous system (the retina containing photoreceptor cells, the optic nerve, the optic tract and the visual cortex) which gives organisms the sense of sight (the a ...
. For example,
melanopsin Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene ''Opn4''. In the mammalian retina, there are two additional categories of opsins, both involved in the for ...
has an absorption range of 420–540 nm and regulates
circadian rhythm A circadian rhythm (), or circadian cycle, is a natural, internal process that regulates the sleep–wake cycle and repeats roughly every 24 hours. It can refer to any process that originates within an organism (i.e., Endogeny (biology), endogeno ...
and other reflexive processes. Since the melanopsin system does not form images, it is not strictly considered
vision Vision, Visions, or The Vision may refer to: Perception Optical perception * Visual perception, the sense of sight * Visual system, the physical mechanism of eyesight * Computer vision, a field dealing with how computers can be made to gain un ...
and does not contribute to the visible range.


In non-humans

The visible spectrum is defined as that visible to humans, but the variance between species is large. Not only can
cone opsin Vertebrate visual opsins are a subclass of ciliary opsins and mediate vision in vertebrates. They include the opsins in human rod and cone cells. They are often abbreviated to ''opsin'', as they were the first opsins discovered and are still th ...
s be spectrally shifted to alter the visible range, but
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, ...
s with 4 cones (tetrachromatic) or 2 cones (dichromatic) relative to humans' 3 (trichromatic) will also tend to have a wider or narrower visible spectrum than humans, respectively. Vertebrates tend to have 1-4 different opsin classes: * longwave sensitive (LWS) with peak sensitivity between 500–570 nm, * middlewave sensitive (MWS) with peak sensitivity between 480–520 nm, * shortwave sensitive (SWS) with peak sensitivity between 415–470 nm, and * violet/ultraviolet sensitive (VS/UVS) with peak sensitivity between 355–435 nm. Testing the visual systems of animals behaviorally is difficult, so the visible range of animals is usually estimated by comparing the peak wavelengths of opsins with those of typical humans (S-opsin at 420 nm and L-opsin at 560 nm).


Mammals

Most mammals have retained only two opsin classes (LWS and VS), due likely to the
nocturnal bottleneck The nocturnal bottleneck hypothesis is a hypothesis to explain several mammalian traits. In 1942, Gordon Lynn Walls described this concept which states that placental mammals were mainly or even exclusively nocturnal through most of their evolu ...
. However, old world primates (including humans) have since evolved two versions in the LWS class to regain trichromacy. Unlike most mammals, rodents' UVS opsins have remained at shorter wavelengths. Along with their lack of UV filters in the lens, mice have a UVS opsin that can detect down to 340 nm. While allowing UV light to reach the retina can lead to retinal damage, the short lifespan of mice compared with other mammals may minimize this disadvantage relative to the advantage of UV vision. Dogs have two cone opsins at 429 nm and 555 nm, so see almost the entire visible spectrum of humans, despite being dichromatic. Horses have two cone opsins at 428 nm and 539 nm, yielding a slightly more truncated red vision.


Birds

Most other vertebrates (birds, lizards, fish, etc.) have retained their
tetrachromacy Tetrachromacy (from Greek language, Greek ''tetra'', meaning "four" and ''chromo'', meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye. Org ...
, including UVS opsins that extend further into the ultraviolet than humans' VS opsin. The sensitivity of avian UVS opsins vary greatly, from 355–425 nm, and LWS opsins from 560–570 nm. This translates to some birds with a visible spectrum on par with humans, and other birds with greatly expanded sensitivity to UV light. The LWS opsin of birds is sometimes reported to have a peak wavelength above 600 nm, but this is an effective peak wavelength that incorporates the filter of avian
oil droplet Oil droplets are found in the eyes of some animals, being located in the photoreceptor cells. They are especially common in the eyes of diurnal (active during the day) reptiles (e.g. lizards, turtles) and birds (see bird vision), though are pres ...
s. The peak wavelength of the LWS opsin alone is the better predictor of the long-wave limit. A possible benefit of avian UV vision involves sex-dependent markings on their
plumage Plumage ( "feather") is a layer of feathers that covers a bird and the pattern, colour, and arrangement of those feathers. The pattern and colours of plumage differ between species and subspecies and may vary with age classes. Within species, ...
that are visible only in the ultraviolet range.


Fish

Teleost Teleostei (; Greek ''teleios'' "complete" + ''osteon'' "bone"), members of which are known as teleosts ), is, by far, the largest infraclass in the class Actinopterygii, the ray-finned fishes, containing 96% of all extant species of fish. Tel ...
s (bony fish) are generally tetrachromatic. The sensitivity of fish UVS opsins vary from 347-383 nm, and LWS opsins from 500-570 nm. However, some fish that use alternative
chromophore A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the molec ...
s can extend their LWS opsin sensitivity to 625 nm. The popular belief that the common goldfish is the only animal that can see both infrared and ultraviolet light is incorrect, because goldfish cannot see infrared light.


Invertebrates

The visual systems of invertebrates deviate greatly from vertebrates, so direct comparisons are difficult. However, UV sensitivity has been reported in most insect species.
Bee Bees are winged insects closely related to wasps and ants, known for their roles in pollination and, in the case of the best-known bee species, the western honey bee, for producing honey. Bees are a monophyly, monophyletic lineage within the ...
s and many other insects can detect ultraviolet light, which helps them find
nectar Nectar is a sugar-rich liquid produced by plants in glands called nectaries or nectarines, either within the flowers with which it attracts pollinating animals, or by extrafloral nectaries, which provide a nutrient source to animal mutualists ...
in flowers. Plant species that depend on insect pollination may owe reproductive success to their appearance in ultraviolet light rather than how colorful they appear to humans. Bees' long-wave limit is at about 590 nm. Mantis shrimp exhibit up to 14 opsins, enabling a visible range of less than 300 nm to above 700 nm.


Thermal vision

Some snakes can "see" radiant heat at
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s between 5 and 30  μm to a degree of accuracy such that a blind
rattlesnake Rattlesnakes are venomous snakes that form the genera ''Crotalus'' and ''Sistrurus'' of the subfamily Crotalinae (the pit vipers). All rattlesnakes are vipers. Rattlesnakes are predators that live in a wide array of habitats, hunting small anim ...
can target vulnerable body parts of the prey at which it strikes, and other snakes with the organ may detect warm bodies from a meter away. It may also be used in
thermoregulation Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature ...
and
predator Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill th ...
detection.Greene HW. (1992). "The ecological and behavioral context for pitviper evolution", in Campbell JA, Brodie ED Jr. ''Biology of the Pitvipers''. Texas: Selva. .


Spectroscopy

Spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
is the study of objects based on the spectrum of color they emit, absorb or reflect. Visible-light spectroscopy is an important tool in
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
(as is
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
at other wavelengths), where scientists use it to analyze the properties of distant objects.
Chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s and small
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
s can be detected in astronomical objects by observing
emission line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s and
absorption line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s. For example,
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
was first detected by analysis of the spectrum of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. The shift in frequency of spectral lines is used to measure the
Doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
(
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
or
blueshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
) of distant objects to determine their velocities towards or away from the observer.
Astronomical spectroscopy Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and othe ...
uses high-dispersion
diffraction grating In optics, a diffraction grating is an optical component with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structura ...
s to observe spectra at very high spectral resolutions.


See also

*
High-energy visible light High-energy visible light (HEV light) is high-frequency, high-energy light in the violet/blue band from 400 to 450  nm in the visible spectrum, which has a number of biological effects, including those on the eye. HEV light may be a cause o ...
*
Cosmic ray visual phenomena Cosmic ray visual phenomena, or light flashes (LF), also known as Astronaut's Eye, are spontaneous flashes of light visually perceived by some astronauts outside the magnetosphere of the Earth, such as during the Apollo program. While LF may be t ...
*
Electromagnetic absorption by water The absorption of electromagnetic radiation by water depends on the state of the water. The absorption in the gas phase occurs in three regions of the spectrum. Rotational transitions are responsible for absorption in the microwave and far-inf ...
*
Two-photon absorption Two-photon absorption (TPA or 2PA) or two-photon excitation or non-linear absorption is the simultaneous absorption of two photons of identical or different frequencies in order to excite a molecule from one state (usually the ground state) to a hi ...
- A method for seeing outside the visible spectrum


References

{{Color topics Color Electromagnetic spectrum Vision