HOME

TheInfoList



OR:

A variable geometry turbomachine uses movable vanes to optimize its efficiency at different operating conditions. This article refers to movable vanes as used in liquid pumps and turbocharger turbines. It does not cover the widespread use of movable vanes in gas turbine compressors.


Performance characteristics of turbomachines

If all fluid velocities at corresponding points within the turbomachine are in the same direction and proportional to the blade speed, then the operating condition of a turbomachine at two different
rotational speed Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc. The symbol fo ...
s will be dynamically similar. If two points, each on dissimilar head-flow characteristics curve, represent similar dynamic operation of the turbo machine, then the non-dimensional variables (ignoring Reynolds number effects) will have same values. Head coefficient Efficiency Power coefficient Where, N is speed of rotation. Q is flow rate. D is impeller diameter. Thus non-dimensional representation is highly advantageous for converging to single performance curve that would otherwise result in multiple curves if plotted dimensionally. Figure 1 shows head characteristics of centrifugal pump versus flow coefficient. Within the normal operating range of this pump, , the head characteristic curves approximately coincide for different values of speed rev/min) and little scatter appears may be due to the effect of Reynolds number. For smaller flow co-efficient, Q/(ND3) < 0.025, the flow became unsteady but dynamically similar conditions still appear i.e. head characteristic curves still coincides for different values of speed. But at high flow rates deviation from the single-curve are noticed for higher values of speed. This effect is due to cavitation, a high speed phenomenon of hydraulic machines caused by the release of vapour bubbles at low pressures. Thus during off-design operating conditions, i.e. Q/(ND3) < 0.03 and Q/(ND3) > 0.06, the flow become unsteady and cavitations occurs . So to avoid cavitation increase efficiency at high flow rates we resort to Variable Geometry Turbomachine.


Fixed geometry turbomachine

Fixed geometry machines are designed to operate at maximum efficiency condition. The efficiency of a fixed geometry machine depends on the
flow coefficient The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the ...
and Reynolds number. For a constant Reynolds number as flow coefficient increases, efficiency also increases, reaches a maximum value and then decreases. Thus off-design operation is completely inefficient and may result in cavitation at higher flow rates.


Variable geometry turbomachine

A variable geometry turbomachine uses movable vanes to regulate the flow. Vane angles are varied using cams driven by
servo motor A servomotor (or servo motor) is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration. It consists of a suitable motor coupled to a sensor for position feedback. It also ...
( actuator). In large installations involving many thousands of kilowatts and where operating conditions fluctuate, sophisticated systems of control are incorporated. Thus variable geometry turbomachine offer a better match of efficiency with changing flow conditions. Figure 2 describes the envelope of optimum efficiency for a variable geometry turbomachine. In the figure each of curves (a, b\, and\, c) represents different fixed geometry machines. The efficiency of the variable geometry turbomachine intersects the point of maximum efficiency for each of the curves (a, b\, and\, c). As the vane angles are variable in Variable Geometry Turbomachine, therefore we introduce an additional variable \beta into equation 1 and 2 to represent the setting of the vanes. We can write: \psi\ = f_4(\phi,\beta),\, \eta\ = f_5(\phi,\beta),\, Where, flow coefficient, \phi\ = \!\left(\right).\, Alternatively, with \beta\ = f_6(\psi,\phi),\, \beta\ = f_7(\eta,\phi),\, \beta can be eliminated to give a new functional dependence: \eta\ = f_8(\phi,\psi)= f_8\!\left(,\right).\, Thus, efficiency in a variable geometry pump is a function of both flow coefficient and energy transfer coefficient.


Applications

Variable Geometry Turbomachine technology is used in
turbocharger In an internal combustion engine, a turbocharger (often called a turbo) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake gas, forcing more air into the engine in order to pro ...
of diesel engines, where the turbo has variable vanes which control the flow of exhaust onto the turbine blades. A Variable Geometry TurbochargerShepher, D.G., Principles of Turbomachinery, Ninth Printing, Macmillan, 1969. has movable vanes which direct the flow of exhaust onto the turbine blades.
Actuators An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a valve. In simple terms, it is a "mover". An actuator requires a control device (controlled by control signal) an ...
are used to adjust the vane angles. Angle of vanes vary throughout the range of RPM to optimize turbine behaviour. At high engine speed, vanes are fully open and the exhaust is fully directed onto the turbine blades. At low engine speeds vanes are almost closed creating a narrow passage for the exhaust. This accelerates the exhaust towards the turbine blades, making them spin faster.


See also

* Supercharger. *
Variable-geometry turbocharger Variable-geometry turbochargers (VGTs), occasionally known as variable-nozzle turbines (VNTs), are a type of turbochargers, usually designed to allow the effective aspect ratio of the turbocharger to be altered as conditions change. This is done ...
.


References


External links

* * {{DEFAULTSORT:Variable geometry turbomachine Turbomachinery