Universe (other)
   HOME

TheInfoList



OR:

The universe is all of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
and
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
and their contents. It comprises all of
existence Existence is the ability of an entity to interact with reality. In philosophy, it refers to the ontology, ontological Property (philosophy), property of being. Etymology The term ''existence'' comes from Old French ''existence'', from Medieval ...
, any
fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electrom ...
,
physical process Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chem ...
and
physical constant A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is contrasted with a mathematical constant, ...
, and therefore all forms of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
and
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
, and the structures they form, from
sub-atomic particles In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a prot ...
to entire
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
. Space and time, according to the prevailing
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
theory of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, emerged together ago, and the universe has been expanding ever since. Today the universe has expanded into an age and size that is physically only in parts observable as the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
, which is approximately 93 billion
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
s in diameter at the present day, while the spatial size, if any, of the entire universe is unknown. Some of the earliest
cosmological models Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
of the universe were developed by
ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic peri ...
and
Indian philosophers Indian philosophy refers to philosophical traditions of the Indian subcontinent. A traditional Hindu classification divides āstika and nāstika schools of philosophy, depending on one of three alternate criteria: whether it believes the Veda ...
and were
geocentric In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, an ...
, placing
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
at the center. Over the centuries, more precise astronomical observations led
Nicolaus Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic Church, Catholic cano ...
to develop the
heliocentric model Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at ...
with the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
at the center of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. In developing the
law of universal gravitation Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distanc ...
,
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
built upon Copernicus's work as well as
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
's
laws of planetary motion In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbit ...
and observations by
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was k ...
. Further observational improvements led to the realization that the Sun is one of a few hundred billion stars in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
, which is one of a few hundred billion galaxies in the observable universe. Many of the stars in a galaxy have planets. At the largest scale, galaxies are distributed uniformly and the same in all directions, meaning that the universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and
supercluster A supercluster is a large group of smaller galaxy clusters or galaxy groups; they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group (which contains more than 54 galaxies), which in turn ...
s which form immense filaments and
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
in space, creating a vast foam-like structure. Discoveries in the early 20th century have suggested that the universe had a beginning and has been expanding since then. According to the Big Bang theory, the energy and matter initially present have become less dense as the universe expanded. After an initial accelerated expansion called the
inflationary epoch __NOTOC__ In physical cosmology, the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the ...
at around 10−32 seconds, and the separation of the four known
fundamental forces In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electrom ...
, the universe gradually cooled and continued to expand, allowing the first
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a pr ...
s and simple
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s to form.
Dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ab ...
gradually gathered, forming a
foam Foams are materials formed by trapping pockets of gas in a liquid or solid. A bath sponge and the head on a glass of beer are examples of foams. In most foams, the volume of gas is large, with thin films of liquid or solid separating the reg ...
-like structure of filaments and
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
under the influence of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. Giant clouds of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
were gradually drawn to the places where dark matter was most
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
, forming the first galaxies, stars, and everything else seen today. From studying the movement of galaxies, it has been discovered that the universe contains much more
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
than is accounted for by visible objects; stars, galaxies, nebulas and interstellar gas. This unseen matter is known as dark matter (''dark'' means that there is a wide range of strong indirect evidence that it exists, but we have not yet detected it directly). The
ΛCDM The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with d ...
model is the most widely accepted model of the universe. It suggests that about of the mass and energy in the universe is
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
which is responsible for the
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
of the
expansion of the universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
, and about is dark matter. Ordinary ('
baryonic In particle physics, a baryon is a type of composite particle, composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron list of particles, family of particles; hadrons are composed o ...
') matter is therefore only of the physical universe. Stars, planets, and visible gas clouds only form about 6% of the ordinary matter. There are many competing hypotheses about the
ultimate fate of the universe The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational ev ...
and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible. Some physicists have suggested various
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The di ...
hypotheses, in which our universe might be one among many universes that likewise exist.


Definition

The physical universe is defined as all of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
and
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
(collectively referred to as
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
) and their contents. Such contents comprise all of energy in its various forms, including
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
and
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
, and therefore planets,
moons A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons'' ...
, stars, galaxies, and the contents of
intergalactic space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, predo ...
. The universe also includes the
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) a ...
s that influence energy and matter, such as
conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, c ...
s,
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, and relativity. The universe is often defined as "the totality of existence", or
everything Everything, every-thing, or every thing is all that exists; the opposite of nothing, or its complement. It is the totality of things relevant to some subject matter. Without expressed or implied limits, it may refer to anything. The universe is ...
that exists, everything that has existed, and everything that will exist. In fact, some philosophers and scientists support the inclusion of ideas and abstract concepts—such as mathematics and logic—in the definition of the universe. The word ''universe'' may also refer to concepts such as ''the cosmos'', ''the world'', and ''nature''.


Etymology

The word ''universe'' derives from the
Old French Old French (, , ; Modern French: ) was the language spoken in most of the northern half of France from approximately the 8th to the 14th centuries. Rather than a unified language, Old French was a linkage of Romance dialects, mutually intelligib ...
word , which in turn derives from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
word , meaning 'combined into one'. The Latin word 'universum' was used by
Cicero Marcus Tullius Cicero ( ; ; 3 January 106 BC – 7 December 43 BC) was a Roman statesman, lawyer, scholar, philosopher, and academic skeptic, who tried to uphold optimate principles during the political crises that led to the estab ...
and later Latin authors in many of the same senses as the modern
English English usually refers to: * English language * English people English may also refer to: Peoples, culture, and language * ''English'', an adjective for something of, from, or related to England ** English national ide ...
word is used.Lewis, C.T. and Short, S (1879) ''A Latin Dictionary'', Oxford University Press, , pp. 1933, 1977–1978.


Synonyms

A term for ''universe'' among the ancient Greek philosophers from
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samos, Samian, or simply ; in Ionian Greek; ) was an ancient Ionians, Ionian Ancient Greek philosophy, Greek philosopher and the eponymou ...
onwards was () 'the all', defined as all matter and all space, and () 'all things', which did not necessarily include the void. Another synonym was () meaning 'the
world In its most general sense, the term "world" refers to the totality of entities, to the whole of reality or to everything that is. The nature of the world has been conceptualized differently in different fields. Some conceptions see the worl ...
, the
cosmos The cosmos (, ) is another name for the Universe. Using the word ''cosmos'' implies viewing the universe as a complex and orderly system or entity. The cosmos, and understandings of the reasons for its existence and significance, are studied in ...
'. Synonyms are also found in Latin authors (, , ) and survive in modern languages, e.g., the
German German(s) may refer to: * Germany (of or related to) **Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ger ...
words , , and for ''universe''. The same synonyms are found in English, such as everything (as in the
theory of everything A theory of everything (TOE or TOE/ToE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all asp ...
), the cosmos (as in
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
), the world (as in the
many-worlds interpretation The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum me ...
), and
nature Nature, in the broadest sense, is the physics, physical world or universe. "Nature" can refer to the phenomenon, phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. ...
(as in
natural law Natural law ( la, ius naturale, ''lex naturalis'') is a system of law based on a close observation of human nature, and based on values intrinsic to human nature that can be deduced and applied independently of positive law (the express enacte ...
s or
natural philosophy Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior throu ...
).


Chronology and the Big Bang

The prevailing model for the evolution of the universe is the Big Bang theory. The Big Bang model states that the earliest state of the universe was an extremely hot and dense one, and that the universe subsequently expanded and cooled. The model is based on
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
and on simplifying assumptions such as the
homogeneity Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
and
isotropy Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
of space. A version of the model with a
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
(Lambda) and
cold dark matter In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a sm ...
, known as the
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with d ...
, is the simplest model that provides a reasonably good account of various observations about the universe. The Big Bang model accounts for observations such as the correlation of distance and
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
of galaxies, the ratio of the number of hydrogen to helium atoms, and the microwave radiation background. The initial hot, dense state is called the
Planck epoch The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with ...
, a brief period extending from time zero to one Planck time unit of approximately 10−43 seconds. During the Planck epoch, all types of matter and all types of energy were concentrated into a dense state, and
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
—currently the weakest by far of the four known forces—is believed to have been as strong as the other fundamental forces, and all the forces may have been unified. The physics controlling this very early period (including
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
in the Planck epoch) is not understood, so we cannot say what, if anything, happened before time zero. Since the Planck epoch, the universe has been expanding to its present scale, with a very short but intense period of
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singularity ...
speculated to have occurred within the first 10−32 seconds. This initial period of inflation would explain why space appears to be very flat, and is uniform on scales much larger than light could otherwise travel since the start of the universe. Within the first fraction of a second of the universe's existence, the four fundamental forces had separated. As the universe continued to cool from its inconceivably hot state, various types of
subatomic particles In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a prot ...
were able to form in short periods of time known as the
quark epoch In physical cosmology, the Quark epoch was the period in the evolution of the early universe when the fundamental interactions of gravitation, electromagnetism, the strong interaction and the weak interaction had taken their present forms, but th ...
, the
hadron epoch In physical cosmology, the hadron epoch started 20 microseconds after the Big Bang. The temperature of the universe had fallen sufficiently to allow the quarks from the preceding quark epoch to bind together into hadrons. Initially, the temperatur ...
, and the
lepton epoch In physical cosmology, the lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the Universe. It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons a ...
. Together, these epochs encompassed less than 10 seconds of time following the Big Bang. These
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s associated stably into ever larger combinations, including stable
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s, which then formed more complex
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
through
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
. This process, known as
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) du ...
, lasted for about 17 minutes and ended about 20 minutes after the Big Bang, so only the fastest and simplest reactions occurred. About 25% of the
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and all the
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s in the universe, by mass, were converted to
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, with small amounts of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
(a
form Form is the shape, visual appearance, or configuration of an object. In a wider sense, the form is the way something happens. Form also refers to: *Form (document), a document (printed or electronic) with spaces in which to write or enter data ...
of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
) and traces of
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
. Any other element was only formed in very tiny quantities. The other 75% of the protons remained unaffected, as
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
nuclei. After nucleosynthesis ended, the universe entered a period known as the
photon epoch In physical cosmology, the photon epoch was the period in the evolution of the early universe in which photons dominated the energy of the universe. The photon epoch started after most leptons and anti-leptons were annihilated at the end of the l ...
. During this period, the universe was still far too hot for matter to form neutral
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s, so it contained a hot, dense, foggy
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
of negatively charged
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s, neutral
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s and positive nuclei. After about 377,000 years, the universe had cooled enough that electrons and nuclei could form the first stable
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s. This is known as recombination for historical reasons; electrons and nuclei were combining for the first time. Unlike plasma, neutral atoms are
transparent Transparency, transparence or transparent most often refer to: * Transparency (optics), the physical property of allowing the transmission of light through a material They may also refer to: Literal uses * Transparency (photography), a still, ...
to many
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s of light, so for the first time the universe also became transparent. The photons released ("
decoupled '' Decoupled'' is an Indian English-language comedy web series for Netflix written by Manu Joseph and directed by Hardik Mehta. The series stars R. Madhavan and Surveen Chawla in the lead roles. Plot A misanthropic writer and his startup-foun ...
") when these atoms formed can still be seen today; they form the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
(CMB). As the universe expands, the
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extract ...
of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
decreases more quickly than does that of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
because the energy of each photon decreases as it is cosmologically redshifted. At around 47,000 years, the
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extract ...
of matter became larger than that of photons and
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s, and began to dominate the large scale behavior of the universe. This marked the end of the
radiation-dominated era The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations. In the early s ...
and the start of the
matter-dominated era The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations. In the early st ...
. In the earliest stages of the universe, tiny fluctuations within the universe's density led to
concentrations In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', an ...
of
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ab ...
gradually forming. Ordinary matter, attracted to these by
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
, formed large gas clouds and eventually, stars and galaxies, where the dark matter was most dense, and
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
where it was least dense. After around 100–300 million years, the first
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s formed, known as
Population III During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed th ...
stars. These were probably very massive, luminous, non metallic and short-lived. They were responsible for the gradual
reionization In the fields of Big Bang theory and cosmology, reionization is the process that caused matter in the universe to reionize after the lapse of the " dark ages". Reionization is the second of two major phase transitions of gas in the universe (t ...
of the universe between about 200–500 million years and 1 billion years, and also for seeding the universe with elements heavier than helium, through
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
. The universe also contains a mysterious energy—possibly a
scalar field In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
—called
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
, the density of which does not change over time. After about 9.8 billion years, the universe had expanded sufficiently so that the density of matter was less than the density of dark energy, marking the beginning of the present
dark-energy-dominated era The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations. In the early s ...
. In this era, the expansion of the universe is
accelerating In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
due to dark energy.


Physical properties

Of the four
fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electrom ...
s,
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
is the dominant at astronomical length scales. Gravity's effects are cumulative; by contrast, the effects of positive and negative charges tend to cancel one another, making electromagnetism relatively insignificant on astronomical length scales. The remaining two interactions, the
weak Weak may refer to: Songs * "Weak" (AJR song), 2016 * "Weak" (Melanie C song), 2011 * "Weak" (SWV song), 1993 * "Weak" (Skunk Anansie song), 1995 * "Weak", a song by Seether from '' Seether: 2002-2013'' Television episodes * "Weak" (''Fear t ...
and
strong nuclear force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
s, decline very rapidly with distance; their effects are confined mainly to sub-atomic length scales. The universe appears to have much more
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
than
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
, an asymmetry possibly related to the
CP violation In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry ( parity symmetry). CP-symmetry states that the laws of physics should be the ...
. This imbalance between matter and antimatter is partially responsible for the existence of all matter existing today, since matter and antimatter, if equally produced at the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, would have completely annihilated each other and left only
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s as a result of their interaction. The universe also appears to have neither net
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
nor
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
, which absences follow from accepted physical laws if the universe is finite. These laws are
Gauss's law In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
and the non-divergence of the
stress–energy–momentum pseudotensor In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allow ...
.


Size and regions

According to the general theory of relativity, far regions of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
may never interact with ours even in the lifetime of the universe due to the finite
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
and the ongoing
expansion of space The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
. For example, radio messages sent from
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
may never reach some regions of space, even if the universe were to exist forever: space may expand faster than light can traverse it. The spatial region that can be observed with telescopes is called the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
, which depends on the location of the observer. The
proper distance Proper length or rest length is the length of an object in the object's rest frame. The measurement of lengths is more complicated in the theory of relativity than in classical mechanics. In classical mechanics, lengths are measured based on t ...
—the distance as would be measured at a specific time, including the present—between Earth and the edge of the observable universe is 46 billion light-years (14 billion
parsecs The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
), making the diameter of the observable universe about 93 billion light-years (28 billion parsecs). The distance the light from the edge of the observable universe has travelled is very close to the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
times the speed of light, , but this does not represent the distance at any given time because the edge of the observable universe and the Earth have since moved further apart. For comparison, the diameter of a typical
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
is 30,000 light-years (9,198
parsecs The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
), and the typical distance between two neighboring galaxies is 3 million
light-years A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
(919.8 kiloparsecs). Rindler, p. 196. As an example, the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
is roughly 100,000–180,000 light-years in diameter, and the nearest sister galaxy to the Milky Way, the
Andromeda Galaxy The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gala ...
, is located roughly 2.5 million light-years away. Because humans cannot observe space beyond the edge of the observable universe, it is unknown whether the size of the universe in its totality is finite or infinite. Estimates suggest that the whole universe, if finite, must be more than 250 times larger than a
Hubble sphere In cosmology, a Hubble volume (named for the astronomer Edwin Hubble) or Hubble sphere, subluminal sphere, causal sphere and sphere of causality is a spherical region of the observable universe surrounding an observer beyond which objects recede ...
. Some disputed estimates for the total size of the universe, if finite, reach as high as 10^ megaparsecs, as implied by a suggested resolution of the No-Boundary Proposal.


Age and expansion

Assuming that the
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with d ...
is correct, the measurements of the parameters using a variety of techniques by numerous experiments yield a best value of the age of the universe at 13.799 ± 0.021 billion years, as of 2015. Over time, the universe and its contents have evolved. For example, the relative population of
quasar A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a m ...
s and galaxies has changed and the universe has expanded. This expansion is inferred from the observation that the light from distant galaxies has been
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
ed, which implies that the galaxies are receding from us. Analyses of
Type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
e indicate that the expansion is accelerating. The more matter there is in the universe, the stronger the mutual
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
pull of the matter. If the universe were ''too'' dense then it would re-collapse into a
gravitational singularity A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravitational field, gravity is so intense that spacetime itself breaks down catastrophically. As such, a singularity is by definition no longer p ...
. However, if the universe contained too ''little'' matter then the self-gravity would be too weak for astronomical structures, like galaxies or planets, to form. Since the Big Bang, the universe has expanded
monotonic In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
ally. Perhaps unsurprisingly, our universe has just the right mass–energy density, equivalent to about 5 protons per cubic metre, which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today. There are dynamical forces acting on the particles in the universe which affect the expansion rate. Before 1998, it was expected that the expansion rate would be decreasing as time went on due to the influence of gravitational interactions in the universe; and thus there is an additional observable quantity in the universe called the
deceleration parameter The deceleration parameter ''q'' in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: :q \ \stackrel\ -\frac where a is the sca ...
, which most cosmologists expected to be positive and related to the matter density of the universe. In 1998, the deceleration parameter was measured by two different groups to be negative, approximately −0.55, which technically implies that the second derivative of the cosmic
scale factor In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a '' scale factor'' that is the same in all directions. The result of uniform scaling is similar ...
\ddot has been positive in the last 5–6 billion years.


Spacetime

Modern physics regards
events Event may refer to: Gatherings of people * Ceremony, an event of ritual significance, performed on a special occasion * Convention (meeting), a gathering of individuals engaged in some common interest * Event management, the organization of eve ...
as being organized into
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
. This idea originated with the
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between Spacetime, space and time. In Albert Einstein's original treatment, the theory is based on two Postulates of ...
, which predicts that if one observer sees two events happening in different places at the same time, a second observer who is moving relative to the first will see those events happening at different times. The two observers will disagree on the time T between the events, and they will disagree about the distance D separating the events, but they will agree on the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
c, and they will measure the same value for the combination c^2T^2 - D^2. The square root of the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
of this quantity is called the ''interval'' between the two events. The interval expresses how widely separated events are, not just in space or in time, but in the combined setting of spacetime. The special theory of relativity cannot account for
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. Its successor, the
general theory of relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
, explains gravity by recognizing that spacetime is not fixed but instead dynamical. In general relativity, gravitational force is reimagined as curvature of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
. A curved path like an orbit is not the result of a force deflecting a body from an ideal straight-line path, but rather the body's attempt to fall freely through a background that is itself curved by the presence of other masses. A remark by
John Archibald Wheeler John Archibald Wheeler (July 9, 1911April 13, 2008) was an American theoretical physicist. He was largely responsible for reviving interest in general relativity in the United States after World War II. Wheeler also worked with Niels Bohr in e ...
that has become proverbial among physicists summarizes the theory: "Spacetime tells matter how to move; matter tells spacetime how to curve", and therefore there is no point in considering one without the other. The Newtonian theory of gravity is a good approximation to the predictions of general relativity when gravitational effects are weak and objects are moving slowly compared to the speed of light. The relation between matter distribution and spacetime curvature is given by the
Einstein field equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
, which require
tensor calculus In mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime). Developed by Gregorio Ricci-Curbastro and his student Tullio Levi ...
to express. The solutions to these equations include not only the spacetime of special relativity,
Minkowski spacetime In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inert ...
, but also Schwarzschild spacetimes, which describe
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
s; FLRW spacetime, which describes an expanding universe; and more. The universe appears to be a smooth spacetime continuum consisting of three space, spatial dimensions and one temporal (
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
) dimension. Therefore, an event in the spacetime of the physical universe can therefore be identified by a set of four coordinates: (''x'', ''y'', ''z'', ''t''). On average, 3-space, space is observed to be very nearly Shape of the universe, flat (with a curvature close to zero), meaning that Euclidean geometry is empirically true with high accuracy throughout most of the universe. Spacetime also appears to have a simply connected space, simply connected topology, in analogy with a sphere, at least on the length scale of the observable universe. However, present observations cannot exclude the possibilities that the universe has more dimensions (which is postulated by theories such as the string theory) and that its spacetime may have a multiply connected global topology, in analogy with the cylindrical or toroidal topologies of two-dimensional
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
s.


Shape

General relativity describes how spacetime is curved and bent by mass and energy (gravity). The topology or geometry of the universe includes both Shape of the universe#Local geometry (spatial curvature), local geometry in the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
and Shape of the universe#Global geometry, global geometry. Cosmologists often work with a given space-like slice of spacetime called the Comoving distance, comoving coordinates. The section of spacetime which can be observed is the backward light cone, which delimits the cosmological horizon. The cosmological horizon, also called the particle horizon or the light horizon, is the maximum distance from which Elementary particle, particles can have traveled to the observation, observer in the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
. This horizon represents the boundary between the observable and the unobservable regions of the universe. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model. An important parameter determining the future evolution of the universe theory is the density parameter, Omega (Ω), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible Shape of the universe, geometries depending on whether Ω is equal to, less than, or greater than 1. These are called, respectively, the flat, open and closed universes. Observations, including the Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP), and Planck (spacecraft), Planck maps of the CMB, suggest that the universe is infinite in extent with a finite age, as described by the Friedmann–Lemaître–Robertson–Walker metric, Friedmann–Lemaître–Robertson–Walker (FLRW) models. These FLRW models thus support inflationary models and the standard model of cosmology, describing a Minkowski space, flat, homogeneous universe presently dominated by
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ab ...
and
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
.


Support of life

The fine-tuned universe hypothesis is the proposition that the conditions that allow the existence of observable life in the universe can only occur when certain universal physical constant, fundamental physical constants lie within a very narrow range of values. According to this hypothesis, if any of several fundamental constants were only slightly different, the universe would have been unlikely to be conducive to the establishment and development of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
, astronomical structures, elemental diversity, or life as it is understood. Whether this is true, and whether that question is even logically meaningful to ask, are subjects of much debate. The proposition is discussed among philosophy, philosophers, scientists, theology, theologians, and proponents of creationism.


Composition

The universe is composed almost completely of dark energy, dark matter, and matter, ordinary matter. Other contents are
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
(estimated to constitute from 0.005% to close to 0.01% of the total mass–energy equivalence, mass–energy of the universe) and
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
. The proportions of all types of matter and energy have changed over the history of the universe. The total amount of electromagnetic radiation generated within the universe has decreased by 1/2 in the past 2 billion years. Today, ordinary matter, which includes atoms, stars, galaxies, and life, accounts for only 4.9% of the contents of the universe. The present overall density of this type of matter is very low, roughly 4.5 × 10−31 grams per cubic centimetre, corresponding to a density of the order of only one proton for every four cubic metres of volume. The nature of both dark energy and dark matter is unknown. Dark matter, a mysterious form of matter that has not yet been identified, accounts for 26.8% of the cosmic contents. Dark energy, which is the energy of empty space and is causing the expansion of the universe to accelerate, accounts for the remaining 68.3% of the contents. Matter, dark matter, and dark energy are distributed homogeneously throughout the universe over length scales longer than 300 million light-years (ly) or so. However, over shorter length-scales, matter tends to clump hierarchically; many
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s are condensed into
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, most stars into galaxies, most galaxies into galaxy groups and clusters, clusters, superclusters and, finally, large-scale Galaxy filament, galactic filaments. The observable universe contains as many as an estimated 2 trillion galaxies and, overall, as many as an estimated 1024 stars – more stars (and earth-like planets) than all the Sand, grains of beach sand on planet
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
; but less than the total number of atoms estimated in the universe as 1082; and the estimated total number of stars in an Inflation (cosmology), inflationary universe (observed and unobserved), as 10100. Typical galaxies range from dwarf galaxy, dwarfs with as few as ten million (107) stars up to giants with one 10^12, trillion (1012) stars. Between the larger structures are
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
, which are typically 10–150 Mpc (33 million–490 million ly) in diameter. The
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
is in the Local Group of galaxies, which in turn is in the Laniakea Supercluster. This supercluster spans over 500 million light-years, while the Local Group spans over 10 million light-years. The universe also has vast regions of relative emptiness; the largest known void measures 1.8 billion ly (550 Mpc) across. The observable universe is isotropic on scales significantly larger than superclusters, meaning that the statistical properties of the universe are the same in all directions as observed from Earth. The universe is bathed in highly isotropic microwave electromagnetic radiation, radiation that corresponds to a thermal equilibrium blackbody spectrum of roughly 2.72548 kelvins. The hypothesis that the large-scale universe is homogeneous and isotropic is known as the cosmological principle. A universe that is both homogeneous and isotropic looks the same from all vantage points. p. 2. and has no center.


Dark energy

An explanation for why the expansion of the universe is accelerating remains elusive. It is often attributed to "dark energy", an unknown form of energy that is hypothesized to permeate space. On a mass–energy equivalence basis, the density of dark energy (~ 7 × 10−30 g/cm3) is much less than the density of ordinary matter or dark matter within galaxies. However, in the present dark-energy era, it dominates the mass–energy of the universe because it is uniform across space. Two proposed forms for dark energy are the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
, a ''constant'' energy density filling space homogeneously, and Scalar field theory, scalar fields such as quintessence (physics), quintessence or moduli (physics), moduli, ''dynamic'' quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant can be formulated to be equivalent to vacuum energy. Scalar fields having only a slight amount of spatial inhomogeneity would be difficult to distinguish from a cosmological constant.


Dark matter

Dark matter is a hypothetical kind of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
that is invisible to the entire electromagnetic spectrum, but which accounts for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the Observable universe#Large-scale structure, large-scale structure of the universe. Other than neutrinos, a form of hot dark matter, dark matter has not been detected directly, making it one of the greatest mysteries in modern astrophysics. Dark matter neither blackbody spectrum, emits nor absorbs light or any other
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
at any significant level. Dark matter is estimated to constitute 26.8% of the total mass–energy and 84.5% of the total matter in the universe.Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, ''Dark Matter, Dark Energy: The Dark Side of the Universe'', Guidebook Part 2. p. 46, Accessed October 7, 2013, "...dark matter: An invisible, essentially collisionless component of matter that makes up about 25 percent of the energy density of the universe... it's a different kind of particle... something not yet observed in the laboratory..."


Ordinary matter

The remaining 4.9% of the mass–energy of the universe is ordinary matter, that is,
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s, ions,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s and the objects they form. This matter includes
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, which produce nearly all of the light we see from galaxies, as well as interstellar gas in the interstellar medium, interstellar and intergalactic medium, intergalactic media, planets, and all the objects from everyday life that we can bump into, touch or squeeze. The great majority of ordinary matter in the universe is unseen, since visible stars and gas inside galaxies and clusters account for less than 10 per cent of the ordinary matter contribution to the mass–energy density of the universe. Ordinary matter commonly exists in four state of matter, states (or phase (matter), phases): solid, liquid, gas, and plasma (physics), plasma. However, advances in experimental techniques have revealed other previously theoretical phases, such as Bose–Einstein condensates and fermionic condensates. Ordinary matter is composed of two types of
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s: quarks and leptons. For example, the proton is formed of two up quarks and one down quark; the neutron is formed of two down quarks and one up quark; and the electron is a kind of lepton. An atom consists of an atomic nucleus, made up of protons and neutrons (both of which are baryons), and electrons that orbit the nucleus. Because most of the mass of an atom is concentrated in its nucleus, which is made up of baryons, astronomers often use the term ''Baryon#Baryonic matter, baryonic matter'' to describe ordinary matter, although a small fraction of this "baryonic matter" is electrons. Soon after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, primordial protons and neutrons formed from the quark–gluon plasma of the early universe as it cooled below two trillion degrees. A few minutes later, in a process known as
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) du ...
, nuclei formed from the primordial protons and neutrons. This nucleosynthesis formed lighter elements, those with small atomic numbers up to
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
and beryllium, but the abundance of heavier elements dropped off sharply with increasing atomic number. Some boron may have been formed at this time, but the next heavier element, carbon, was not formed in significant amounts. Big Bang nucleosynthesis shut down after about 20 minutes due to the rapid drop in temperature and density of the expanding universe. Subsequent formation of metallicity, heavier elements resulted from
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
and supernova nucleosynthesis.


Particles

Ordinary matter and the forces that act on matter can be described in terms of
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s. These particles are sometimes described as being fundamental, since they have an unknown substructure, and it is unknown whether or not they are composed of smaller and even more fundamental particles. In most contemporary models they are thought of as points in space. All elementary particles are currently best explained by quantum mechanics and exhibit wave–particle duality: their behavior has both particle-like and wave-like aspects, with different features dominating under different circumstances. Of central importance is the Standard Model, a theory that is concerned with Electromagnetism, electromagnetic interactions and the Weak interaction, weak and Strong interaction, strong nuclear interactions. The Standard Model is supported by the experimental confirmation of the existence of particles that compose matter: quarks and leptons, and their corresponding "
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
" duals, as well as the force particles that mediate fundamental interactions, interactions: the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
, the W and Z bosons, and the gluon. The Standard Model predicted the existence of the recently discovered Higgs boson, a particle that is a manifestation of a field within the universe that can endow particles with mass. Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything". The Standard Model does not, however, accommodate gravity. A true force–particle "theory of everything" has not been attained.


Hadrons

A hadron is a composite particle made of quarks bound state, held together by the strong force. Hadrons are categorized into two families: baryons (such as
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s) made of three quarks, and mesons (such as pions) made of one quark and one antiparticle, antiquark. Of the hadrons, protons are stable, and neutrons bound within atomic nuclei are stable. Other hadrons are unstable under ordinary conditions and are thus insignificant constituents of the modern universe. From approximately 10−6 seconds after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, during a period known as the
hadron epoch In physical cosmology, the hadron epoch started 20 microseconds after the Big Bang. The temperature of the universe had fallen sufficiently to allow the quarks from the preceding quark epoch to bind together into hadrons. Initially, the temperatur ...
, the temperature of the universe had fallen sufficiently to allow quarks to bind together into hadrons, and the mass of the universe was dominated by hadrons. Initially, the temperature was high enough to allow the formation of hadron–anti-hadron pairs, which kept matter and antimatter in thermal equilibrium. However, as the temperature of the universe continued to fall, hadron–anti-hadron pairs were no longer produced. Most of the hadrons and anti-hadrons were then eliminated in particle–antiparticle annihilation reactions, leaving a small residual of hadrons by the time the universe was about one second old.


Leptons

A lepton is an elementary particle, elementary, half-integer spin particle that does not undergo strong interactions but is subject to the Pauli exclusion principle; no two leptons of the same species can be in exactly the same state at the same time. Two main classes of leptons exist: electric charge, charged leptons (also known as the ''electron-like'' leptons), and neutral leptons (better known as
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s). Electrons are stable and the most common charged lepton in the universe, whereas muons and tau (particle), taus are unstable particles that quickly decay after being produced in high energy physics, high energy collisions, such as those involving cosmic rays or carried out in particle accelerators. Charged leptons can combine with other particles to form various composite particles such as
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s and positronium. The
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
governs nearly all of chemistry, as it is found in
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s and is directly tied to all chemical property, chemical properties. Neutrinos rarely interact with anything, and are consequently rarely observed. Neutrinos stream throughout the universe but rarely interact with normal matter. The
lepton epoch In physical cosmology, the lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the Universe. It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons a ...
was the period in the evolution of the early universe in which the leptons dominated the mass of the universe. It started roughly 1 second after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, after the majority of hadrons and anti-hadrons annihilated each other at the end of the
hadron epoch In physical cosmology, the hadron epoch started 20 microseconds after the Big Bang. The temperature of the universe had fallen sufficiently to allow the quarks from the preceding quark epoch to bind together into hadrons. Initially, the temperatur ...
. During the lepton epoch the temperature of the universe was still high enough to create lepton–anti-lepton pairs, so leptons and anti-leptons were in thermal equilibrium. Approximately 10 seconds after the Big Bang, the temperature of the universe had fallen to the point where lepton–anti-lepton pairs were no longer created. Most leptons and anti-leptons were then eliminated in annihilation reactions, leaving a small residue of leptons. The mass of the universe was then dominated by
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s as it entered the following
photon epoch In physical cosmology, the photon epoch was the period in the evolution of the early universe in which photons dominated the energy of the universe. The photon epoch started after most leptons and anti-leptons were annihilated at the end of the l ...
.


Photons

A photon is the quantum of light and all other forms of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
. It is the force carrier, carrier for the electromagnetic force. The effects of this force are easily observable at the microscopic scale, microscopic and at the macroscopic scale, macroscopic level because the photon has zero rest mass; this allows long distance fundamental interaction, interactions. The photon epoch started after most leptons and anti-leptons were annihilation, annihilated at the end of the lepton epoch, about 10 seconds after the Big Bang. Atomic nuclei were created in the process of nucleosynthesis which occurred during the first few minutes of the photon epoch. For the remainder of the photon epoch the universe contained a hot dense plasma (physics), plasma of nuclei, electrons and photons. About 380,000 years after the Big Bang, the temperature of the universe fell to the point where nuclei could combine with electrons to create neutral atoms. As a result, photons no longer interacted frequently with matter and the universe became transparent. The highly redshifted photons from this period form the cosmic microwave background. Tiny variations in temperature and density detectable in the CMB were the early "seeds" from which all subsequent structure formation took place.


Cosmological models


Model of the universe based on general relativity

General relativity is the Differential geometry, geometric Theoretical physics, theory of
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
published by Albert Einstein in 1915 and the current description of gravitation in modern physics. It is the basis of current Physical cosmology, cosmological models of the universe. General relativity generalizes special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
and Time in physics, time, or spacetime. In particular, the curvature of spacetime is directly related to the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
and
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
of whatever
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
and radiation are present. The relation is specified by the
Einstein field equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
, a system of partial differential equations. In general relativity, the distribution of matter and energy determines the geometry of spacetime, which in turn describes the acceleration of matter. Therefore, solutions of the Einstein field equations describe the evolution of the universe. Combined with measurements of the amount, type, and distribution of matter in the universe, the equations of general relativity describe the evolution of the universe over time. With the assumption of the cosmological principle that the universe is homogeneous and isotropic everywhere, a specific solution of the field equations that describes the universe is the metric (general relativity), metric tensor called the Friedmann–Lemaître–Robertson–Walker metric, : ds^2 = -c^ dt^2 + R(t)^2 \left( \frac + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\phi^2 \right) where (''r'', θ, φ) correspond to a spherical coordinate system. This metric has only two undetermined parameters. An overall dimensionless length scale factor (cosmology), scale factor ''R'' describes the size scale of the universe as a function of time (an increase in ''R'' is the
expansion of the universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
), and a curvature index ''k'' describes the geometry. The index ''k'' is defined so that it can take only one of three values: 0, corresponding to flat Euclidean geometry; 1, corresponding to a space of positive curvature; or −1, corresponding to a space of positive or negative curvature. The value of ''R'' as a function of time ''t'' depends upon ''k'' and the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
''Λ''. The cosmological constant represents the energy density of the vacuum of space and could be related to dark energy. The equation describing how ''R'' varies with time is known as the Friedmann equation after its inventor, Alexander Friedmann. The solutions for ''R(t)'' depend on ''k'' and ''Λ'', but some qualitative features of such solutions are general. First and most importantly, the length scale ''R'' of the universe can remain constant ''only'' if the universe is perfectly isotropic with positive curvature (''k''=1) and has one precise value of density everywhere, as first noted by Albert Einstein. However, this equilibrium is unstable: if the density were slightly different from the needed value, at any place, the difference would be amplified over time. Second, all solutions suggest that there was a
gravitational singularity A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravitational field, gravity is so intense that spacetime itself breaks down catastrophically. As such, a singularity is by definition no longer p ...
in the past, when ''R'' went to zero and matter and energy were infinitely dense. It may seem that this conclusion is uncertain because it is based on the questionable assumptions of perfect homogeneity and isotropy (the cosmological principle) and that only the gravitational interaction is significant. However, the Penrose–Hawking singularity theorems show that a singularity should exist for very general conditions. Hence, according to Einstein's field equations, ''R'' grew rapidly from an unimaginably hot, dense state that existed immediately following this singularity (when ''R'' had a small, finite value); this is the essence of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
model of the universe. Understanding the singularity of the Big Bang likely requires a quantum theory of gravity, which has not yet been formulated. Third, the curvature index ''k'' determines the sign of the curvature of constant-time spatial surfaces averaged over sufficiently large length scales (greater than about a billion
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
s). If ''k''=1, the curvature is positive and the universe has a finite volume. A universe with positive curvature is often visualized as a 3-sphere, three-dimensional sphere embedded in a four-dimensional space. Conversely, if ''k'' is zero or negative, the universe has an infinite volume. It may seem counter-intuitive that an infinite and yet infinitely dense universe could be created in a single instant when ''R'' = 0, but exactly that is predicted mathematically when ''k'' is nonpositive and the cosmological principle is satisfied. By analogy, an infinite plane has zero curvature but infinite area, whereas an infinite cylinder is finite in one direction and a torus is finite in both. A toroidal universe could behave like a normal universe with periodic boundary conditions. The
ultimate fate of the universe The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational ev ...
is still unknown because it depends critically on the curvature index ''k'' and the cosmological constant ''Λ''. If the universe were sufficiently dense, ''k'' would equal +1, meaning that its average curvature throughout is positive and the universe will eventually recollapse in a Big Crunch, possibly starting a new universe in a Big Bounce. Conversely, if the universe were insufficiently dense, ''k'' would equal 0 or −1 and the universe would expand forever, cooling off and eventually reaching the Future of an expanding universe, Big Freeze and the heat death of the universe. Modern data suggests that the accelerated expansion, expansion of the universe is accelerating; if this acceleration is sufficiently rapid, the universe may eventually reach a Big Rip. Observationally, the universe appears to be flat (''k'' = 0), with an overall density that is very close to the critical value between recollapse and eternal expansion.


Multiverse hypotheses

Some speculative theories have proposed that our universe is but one of a set (mathematics), set of disconnected universes, collectively denoted as the
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The di ...
, challenging or enhancing more limited definitions of the universe. Scientific multiverse models are distinct from concepts such as plane (esotericism), alternate planes of consciousness and simulated reality. Max Tegmark developed a four-part Multiverse#Max Tegmark's four levels, classification scheme for the different types of multiverses that scientists have suggested in response to various problems in physics. An example of such multiverses is the one resulting from the bubble universe theory, chaotic inflation model of the early universe.
Another is the multiverse resulting from the
many-worlds interpretation The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum me ...
of quantum mechanics. In this interpretation, parallel worlds are generated in a manner similar to quantum superposition and decoherence, with all states of the wave functions being realized in separate worlds. Effectively, in the many-worlds interpretation the multiverse evolves as a universal wavefunction. If the Big Bang that created our multiverse created an ensemble of multiverses, the wave function of the ensemble would be entangled in this sense. Whether scientifically meaningful probabilities can be extracted from this picture has been and continues to be a topic of much debate, and multiple versions of the many-worlds interpretation exist. (The subject of the Interpretations of quantum mechanics, interpretation of quantum mechanics is in general marked by disagreement.) The least controversial, but still highly disputed, category of multiverse in Tegmark's scheme is Multiverse#Level I: An extension of our universe, Level I. The multiverses of this level are composed by distant spacetime events "in our own universe". Tegmark and others have argued that, if space is infinite, or sufficiently large and uniform, identical instances of the history of Earth's entire Hubble volume occur every so often, simply by chance. Tegmark calculated that our nearest so-called doppelgänger is 1010115 metres away from us (a double exponential function larger than a googolplex). However, the arguments used are of speculative nature. Additionally, it would be impossible to scientifically verify the existence of an identical Hubble volume. It is possible to conceive of disconnected spacetimes, each existing but unable to interact with one another. An easily visualized metaphor of this concept is a group of separate soap bubbles, in which observers living on one soap bubble cannot interact with those on other soap bubbles, even in principle. According to one common terminology, each "soap bubble" of spacetime is denoted as a ''universe'', whereas humans' particular spacetime is denoted as ''the universe'', just as humans call Earth's moon ''the Moon''. The entire collection of these separate spacetimes is denoted as the multiverse. With this terminology, different ''universes'' are not causality, causally connected to each other. In principle, the other unconnected ''universes'' may have different dimensionalities and Topology, topologies of spacetime, different forms of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
, and different
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) a ...
s and
physical constant A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is contrasted with a mathematical constant, ...
s, although such possibilities are purely speculative. Others consider each of several bubbles created as part of chaotic inflation to be separate ''universes'', though in this model these universes all share a causal origin.


Historical conceptions

Historically, there have been many ideas of the cosmos (cosmologies) and its origin (cosmogonies). Theories of an impersonal universe governed by physical laws were first proposed by the Greeks and Indians. Ancient Chinese philosophy encompassed the notion of the universe including both all of space and all of time. Over the centuries, improvements in astronomical observations and theories of motion and gravitation led to ever more accurate descriptions of the universe. The modern era of cosmology began with Albert Einstein's 1915 general relativity, general theory of relativity, which made it possible to quantitatively predict the origin, evolution, and conclusion of the universe as a whole. Most modern, accepted theories of cosmology are based on general relativity and, more specifically, the predicted
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
.


Mythologies

Many cultures have List of creation myths, stories describing the origin of the world and universe. Cultures generally regard these stories as having some truth. There are however many differing beliefs in how these stories apply amongst those believing in a supernatural origin, ranging from a god directly creating the universe as it is now to a god just setting the "wheels in motion" (for example via mechanisms such as the big bang and evolution). Ethnologists and anthropologists who study myths have developed various classification schemes for the various themes that appear in creation stories. For example, in one type of story, the world is born from a world egg; such stories include the Finnish people, Finnish epic poetry, epic poem ''Kalevala'', the China, Chinese story of Pangu or the History of India, Indian Brahmanda Purana. In related stories, the universe is created by a single entity emanating or producing something by him- or herself, as in the Tibetan Buddhism concept of Adi-Buddha, the ancient Greece, ancient Greek story of Gaia (mythology), Gaia (Mother Earth), the Aztec mythology, Aztec goddess Coatlicue myth, the ancient Egyptian religion, ancient Egyptian Ennead, god Atum story, and the Judeo-Christian Genesis creation narrative in which the God in Abrahamic religions, Abrahamic God created the universe. In another type of story, the universe is created from the union of male and female deities, as in the Maori mythology, Maori story of Rangi and Papa. In other stories, the universe is created by crafting it from pre-existing materials, such as the corpse of a dead god—as from Tiamat in the Babylonian epic ''Enuma Elish'' or from the giant Ymir in Norse mythology—or from chaotic materials, as in Izanagi and Izanami in Japanese mythology. In other stories, the universe emanates from fundamental principles, such as Brahman and Prakrti, the Serer creation myth, creation myth of the Serer people, Serers, or the yin and yang of the Tao.


Philosophical models

The pre-Socratic philosophy, pre-Socratic Greek philosophers and Indian philosophers developed some of the earliest philosophical concepts of the universe. The earliest Greek philosophers noted that appearances can be deceiving, and sought to understand the underlying reality behind the appearances. In particular, they noted the ability of matter to change forms (e.g., ice to water to steam) and several philosophers proposed that all the physical materials in the world are different forms of a single primordial material, or ''arche''. The first to do so was Thales, who proposed this material to be Water (classical element), water. Thales' student, Anaximander, proposed that everything came from the limitless ''Apeiron (cosmology), apeiron''. Anaximenes of Miletus, Anaximenes proposed the primordial material to be Air (classical element), air on account of its perceived attractive and repulsive qualities that cause the ''arche'' to condense or dissociate into different forms. Anaxagoras proposed the principle of ''Nous'' (Mind), while Heraclitus proposed fire (classical element), fire (and spoke of ''logos''). Empedocles proposed the elements to be earth, water, air and fire. His four-element model became very popular. Like
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samos, Samian, or simply ; in Ionian Greek; ) was an ancient Ionians, Ionian Ancient Greek philosophy, Greek philosopher and the eponymou ...
, Plato believed that all things were composed of number, with Empedocles' elements taking the form of the Platonic solids. Democritus, and later philosophers—most notably Leucippus—proposed that the universe is composed of indivisible
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s moving through a void (astronomy), void (vacuum), although Aristotle did not believe that to be feasible because air, like water, offers Drag (physics), resistance to motion. Air will immediately rush in to fill a void, and moreover, without resistance, it would do so indefinitely fast. Although Heraclitus argued for eternal change, his contemporary Parmenides emphasized changelessness. Parmenides' poem ''On Nature'' has been read as saying that all change is an illusion, that the true underlying reality is eternally unchanging and of a single nature, or at least that the essential feature of each thing that exists must exist eternally, without origin, change, or end. His student Zeno of Elea challenged everyday ideas about motion with several famous Zeno's paradoxes, paradoxes. Aristotle responded to these paradoxes by developing the notion of a potential countable infinity, as well as the infinitely divisible continuum. Unlike the eternal and unchanging cycles of time, he believed that the world is bounded by the celestial spheres and that cumulative stellar magnitude is only finitely multiplicative. The Indian philosophy, Indian philosopher Kanada (philosopher), Kanada, founder of the Vaisheshika school, developed a notion of atomism and proposed that light and heat were varieties of the same substance. In the 5th century AD, the Buddhist atomism, Buddhist atomist philosopher Dignāga proposed
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s to be point-sized, durationless, and made of energy. They denied the existence of substantial matter and proposed that movement consisted of momentary flashes of a stream of energy. The notion of temporal finitism was inspired by the doctrine of creation shared by the three Abrahamic religions: Judaism, Christianity and Islam. The Christian philosophy, Christian philosopher, John Philoponus, presented the philosophical arguments against the ancient Greek notion of an infinite past and future. Philoponus' arguments against an infinite past were used by the Early Islamic philosophy, early Muslim philosopher, Al-Kindi (Alkindus); the Jewish philosophy, Jewish philosopher, Saadia Gaon (Saadia ben Joseph); and the Kalam, Muslim theologian, Al-Ghazali (Algazel). Pantheism is the Philosophy, philosophical Religion, religious belief that the universe itself is identical to divinity and a Deity, supreme being or entity. The physical universe is thus understood as an all-encompassing, Immanence, immanent deity. The term 'pantheist' designates one who holds both that everything constitutes a unity and that this unity is divine, consisting of an all-encompassing, manifested God (male deity), god or goddess. Pantheistic concepts date back thousands of years, and pantheistic elements have been identified in various religious traditions.


Astronomical concepts

The earliest written records of identifiable history of astronomy, predecessors to modern astronomy come from Ancient Egypt and Mesopotamia from around 3000 to 1200 Common Era, BCE. Babylonian astronomy, Babylonian astronomers of the 7th century BCE viewed the world as a Flat Earth, flat disk surrounded by the ocean, and this forms the premise for early Greek maps like those of Anaximander and Hecataeus of Miletus. Later Ancient Greece, Greek philosophers, observing the motions of the heavenly bodies, were concerned with developing models of the universe based more profoundly on empirical evidence. The first coherent model was proposed by Eudoxus of Cnidos, a student of Plato who followed Plato's idea that heavenly motions had to be circular. In order to account for the known complications of the planets' motions, particularly Retrograde and prograde motion, retrograde movement, Eudoxus' model included 27 different celestial spheres: four for each of the planets visible to the naked eye, three each for the Sun and the Moon, and one for the stars. All of these spheres were centered on the Earth, which remained motionless while they rotated eternally. Aristotle elaborated upon this model, increasing the number of spheres to 55 in order to account for further details of planetary motion. For Aristotle, normal classical elements, matter was entirely contained within the terrestrial sphere, and it obeyed fundamentally different rules from Aether (classical element), heavenly material. The post-Aristotle treatise ''De Mundo'' (of uncertain authorship and date) stated, "Five elements, situated in spheres in five regions, the less being in each case surrounded by the greater—namely, earth surrounded by water, water by air, air by fire, and fire by ether—make up the whole universe". This model was also refined by Callippus and after concentric spheres were abandoned, it was brought into nearly perfect agreement with astronomical observations by Ptolemy. The success of such a model is largely due to the mathematical fact that any function (such as the position of a planet) can be decomposed into a set of circular functions (the Fourier series, Fourier modes). Other Greek scientists, such as the Pythagoreans, Pythagorean philosopher Philolaus, postulated (according to Stobaeus' account) that at the center of the universe was a "central fire" around which the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
,
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, Moon and planets revolved in uniform circular motion. The Greek astronomy, Greek astronomer Aristarchus of Samos was the first known individual to propose a Heliocentrism, heliocentric model of the universe. Though the original text has been lost, a reference in Archimedes' book ''The Sand Reckoner'' describes Aristarchus's heliocentric model. Archimedes wrote:
You, King Gelon, are aware the universe is the name given by most astronomers to the sphere the center of which is the center of the Earth, while its radius is equal to the straight line between the center of the Sun and the center of the Earth. This is the common account as you have heard from astronomers. But Aristarchus has brought out a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions made, that the universe is many times greater than the universe just mentioned. His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface.
Aristarchus thus believed the stars to be very far away, and saw this as the reason why stellar parallax had not been observed, that is, the stars had not been observed to move relative each other as the Earth moved around the Sun. The stars are in fact much farther away than the distance that was generally assumed in ancient times, which is why stellar parallax is only detectable with precision instruments. The geocentric model, consistent with planetary parallax, was assumed to be the explanation for the unobservability of stellar parallax. The only other astronomer from antiquity known by name who supported Aristarchus's heliocentric model was Seleucus of Seleucia, a Hellenistic astronomer who lived a century after Aristarchus. According to Plutarch, Seleucus was the first to prove the heliocentric system through reasoning, but it is not known what arguments he used. Seleucus' arguments for a heliocentric cosmology were probably related to the phenomenon of tides. According to Strabo (1.1.9), Seleucus was the first to state that the tides are due to the attraction of the Moon, and that the height of the tides depends on the Moon's position relative to the Sun. Alternatively, he may have proved heliocentricity by determining the constants of a Geometry, geometric model for it, and by developing methods to compute planetary positions using this model, similar to
Nicolaus Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic Church, Catholic cano ...
in the 16th century. During the Middle Ages, Heliocentrism, heliocentric models were also proposed by the Islamic astronomy, Persian astronomers Ja'far ibn Muhammad Abu Ma'shar al-Balkhi, Albumasar and Al-Sijzi. The Aristotelian model was accepted in the Western world for roughly two millennia, until Copernicus revived Aristarchus's perspective that the astronomical data could be explained more plausibly if the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
rotated on its axis and if the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
were placed at the center of the universe. As noted by Copernicus, the notion that the Earth's rotation, Earth rotates is very old, dating at least to Philolaus (), Heraclides Ponticus () and Ecphantus the Pythagorean. Roughly a century before Copernicus, the Christian scholar Nicholas of Cusa also proposed that the Earth rotates on its axis in his book, ''On Learned Ignorance'' (1440). Al-Sijzi also proposed that the Earth rotates on its axis. Empirical research, Empirical evidence for the Earth's rotation on its axis, using the phenomenon of comets, was given by Nasīr al-Dīn al-Tūsī, Tusi (1201–1274) and Ali Qushji (1403–1474). This cosmology was accepted by
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
, Christiaan Huygens and later scientists.#Misner, Misner, Thorne and Wheeler, pp. 755–756. Newton demonstrated that the same Newton's laws of motion, laws of motion and gravity apply to earthly and to celestial matter, making Aristotle's division between the two obsolete. Edmund Halley (1720)#Misner, Misner, Thorne and Wheeler, p. 756. and Jean-Philippe de Chéseaux (1744) noted independently that the assumption of an infinite space filled uniformly with stars would lead to the prediction that the nighttime sky would be as bright as the Sun itself; this became known as Olbers' paradox in the 19th century. Newton believed that an infinite space uniformly filled with matter would cause infinite forces and instabilities causing the matter to be crushed inwards under its own gravity. This instability was clarified in 1902 by the Jeans instability criterion. One solution to these paradoxes is the Carl Charlier, Charlier universe, in which the matter is arranged hierarchically (systems of orbiting bodies that are themselves orbiting in a larger system, ''ad infinitum'') in a fractal way such that the universe has a negligibly small overall density; such a cosmological model had also been proposed earlier in 1761 by Johann Heinrich Lambert. During the 18th century, Immanuel Kant speculated that nebulae could be entire galaxies separate from the Milky Way, and in 1850, Alexander von Humboldt called these separate galaxies ''Weltinseln'', or "world islands", a term that later developed into "island universes". In 1919, when the Hooker Telescope was completed, the prevailing view was that the universe consisted entirely of the Milky Way Galaxy. Using the Hooker Telescope, Edwin Hubble identified Cepheid variables in several spiral nebulae and in 1922–1923 proved conclusively that Andromeda Galaxy, Andromeda Nebula and Triangulum Nebula, Triangulum among others, were entire galaxies outside our own, thus proving that the universe consists of a multitude of galaxies. The modern era of physical cosmology began in 1917, when Albert Einstein first applied his
general theory of relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
to model the structure and dynamics of the universe. The discoveries of this era, and the questions that remain unanswered, are outlined in the sections above.


See also

* Cosmic Calendar (scaled down timeline) * Cosmic latte * Detailed logarithmic timeline * Earth's location in the universe * False vacuum * Future of an expanding universe * Galaxy And Mass Assembly survey * Heat death of the universe * History of the center of the Universe * Illustris project * Non-standard cosmology * Nucleocosmochronology * Parallel universe (fiction) * Rare Earth hypothesis * Space and survival * Terasecond and longer * Timeline of the early universe * Timeline of the far future * Timeline of the near future * Zero-energy universe


References

Footnotes Citations


Bibliography

* * * * * * *


External links


NASA/IPAC Extragalactic Database (NED)
/
NED-Distances
.

– ''LiveScience'', July 2021.
''This is why we will never know everything about our universe''
– ''Forbes'', May 2019. {{Authority control Universe, Articles containing video clips Astronomical dynamical systems Concepts in astronomy Environments Main topic articles Physical cosmology