HOME

TheInfoList



OR:

UGV Interoperability Profile (UGV IOP), Robotics and Autonomous Systems – Ground IOP (RAS-G IOP) or simply IOP was originally an initiative started by the United States Department of Defense (DoD) to organize and maintain
open architecture Open architecture is a type of computer architecture or software architecture intended to make adding, upgrading, and swapping components with other computers easy. For example, the IBM PC, Amiga 500 and Apple IIe have an open architecture support ...
interoperability Interoperability is a characteristic of a product or system to work with other products or systems. While the term was initially defined for information technology or systems engineering services to allow for information exchange, a broader defi ...
standards for Unmanned Ground Vehicles (UGV). A primary goal of this initiative is to leverage existing and emerging standards within the Unmanned Vehicle (UxV) community such as the Society of Automotive Engineers (SAE) AS-4 Joint Architecture for Unmanned Systems (
JAUS Joint Architecture for Unmanned Systems (JAUS), formerly known as Joint Architecture for Unmanned Ground Systems (JAUGS), was originally an initiative started in 1998 by the United States Department of Defense to develop an open architecture for t ...
) standard and the Army Unmanned Aircraft Systems (UAS) Project Office IOPs. The IOP was initially created by U.S. Army Robotic Systems Joint Project Office (RS JPO): and is currently maintained by the U.S. Army Project Manager Force Projection (PM FP). The plural form Interoperability Profiles (IOPs) typically refers to the set of documents, which comprise the IOP and its intended usage. The IOPs are approved for public release. The National Advanced Mobility Consortium (NAMC) makes the IOPs available at the https://namcgroups.org website for registered users.


Basic Concepts

From a system perspective, the IOP is defined to address interoperability at multiple levels within varying systems configurations, e.g.: * OCU/UxV(s): Between Operator Control Units (OCU) and one or more Unmanned Vehicles (UxV(s)) * Intra-OCU: Between and among OCU hardware and software elements. * Intra-UxV: Between and among UxV subsystems, payloads and platforms. * OCU/UxV/C2: Between OCUs, UxVs and external C2 systems to exchange command and control, battlespace and audio/video information. A key solution to this is the utilization of
JAUS Joint Architecture for Unmanned Systems (JAUS), formerly known as Joint Architecture for Unmanned Ground Systems (JAUGS), was originally an initiative started in 1998 by the United States Department of Defense to develop an open architecture for t ...
to establish a common
message passing In computer science, message passing is a technique for invoking behavior (i.e., running a program) on a computer. The invoking program sends a message to a process (which may be an actor or object) and relies on that process and its supporting i ...
layer between the software components of the system. The IOP specifies rules for the use of standard JAUS messages as well as custom extensions to the standard message set. For the interoperability of hardware components, the IOP also includes the specification of hardware plugs and mounts.


Versions

The DoD intends to publish revisions to the IOP every other year. The current version is IOP version 2.0 (IOPv2). The release of version 3.0 is scheduled for the end of 2017. Since version 3.0 the whole set of IOP documents is auto-generated from
XML Extensible Markup Language (XML) is a markup language and file format for storing, transmitting, and reconstructing arbitrary data. It defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. T ...
files.


Document Structure & Overview

The IOPs consist of the following documents ;Overarching Profile: Provides the base concepts, architecture, requirements, and overview for the IOP; and specifically addresses platform, payload, mobility, on-vehicle network, communication, and logical interoperability messaging requirements. Additionally, this document introduces and presents the conformance and validation approach to be employed within the IOP. ;Capabilities Plan: Defines capability requirements related to the employment and usage of UGVs to perform current and relevant near-term robotic missions, in turn scoping and bounding the content of the IOP. ;SAE JAUS Profiling Rules: Specifies the manner in which the SAE AS-4 JAUS standards have been profiled, to include clarification or additional content to define interoperability between controllers and UGVs as well as intra-UGV (platform/subsystem) interoperability. ;Custom Services, Messages and Transports: Specifies additional SAE AS-4 JAUS messages and transport protocols required to support the scope of the IOP. Although titled “custom”, these messages are published and standardized within the IOP community with the end goal of transitioning to the SAE AS-4 JAUS standard(s) or other standards bodies for official adoption. ;Control Profile: Specifies the Operator Control Unit (OCU) logical architecture, standards, Human-Machine Interface (HMI) requirements, and conformance approach to include host application user interface requirements, such as mission planning and command and control. Although OCU concepts and high level architecture are touched upon in the Overarching Profile, the Control Profile provides the more detailed requirements to specify how interoperability is to be achieved for conformant controllers. ;Payloads Profile: Specifies the payload classification, standards, requirements, and conformance approach. Although these concepts are touched upon in the Overarching Profile, the Payloads Profile provides the more detailed requirements to specify the interoperability requirements for payloads with respect to the UGV platform. ;Communications Profile: Specifies the communications standards, requirements, and conformance approach. Although these concepts are touched upon in the Overarching Profile, the Communications Profile provides the more detailed requirements to specify interoperability requirements for communications between and among controllers and UGVs. ;Applique Profile: Specifies the appliqué systems classification, standards, requirements, and conformance approach. Although these concepts are touched upon in the Overarching Profile, the Applique Profile provides the more detailed requirements to specify the interoperability requirements for appliqué systems with respect to the unmanned ground systems, controllers, and base manned vehicle systems.


Conformance Validation Tool

To validate the conformance of UGV components to IOP attributes (JAUS Profiling Rules),
TARDEC The United States Army DEVCOM Ground Vehicle Systems Center (GVSC) (formerly United States Army Tank Automotive Research, Development and Engineering Center (TARDEC)), located in Warren, Michigan, is the United States Armed Forces' research and ...
has developed a software tool called Conformance Validation Tool (CVT). The CVT is a client tool that checks the interface (JAUS messages) and protocol (state) of the required JAUS services. The CVT uses the original IOP XML-files to generate test messages. Thus, the CVT is considered to be the IOP reference implementation.


Significance and Distribution


NATO

The
NATO The North Atlantic Treaty Organization (NATO, ; french: Organisation du traité de l'Atlantique nord, ), also called the North Atlantic Alliance, is an intergovernmental military alliance between 30 member states – 28 European and two No ...
Team of Experts on UGV has recommended the IOP to become a NATO
STANAG In NATO, a standardization agreement (STANAG, redundantly: STANAG agreement) defines processes, procedures, terms, and conditions for common military or technical procedures or equipment between the member countries of the alliance. Each NATO st ...
. The proposal is being considered by NATO Land Capability Group Land Engagement (LCG LE). To prove the applicability of IOP to military robots, the NATO Team of Experts on UGV conducted several interoperability exercises and demonstrations.


Commercial use

Several robotics companies already support IOP-compliant interfaces for their software or hardware products.


Academia

Several academic robotics contests, like the IOP Challenge of th
Intelligent Ground Vehicle Competition
or th
European Robotics Hackathon (EnRicH)
ref>
recommend or require IOP as a common interface definition.


Connection to other robotics middlewares

As IOP relies on the message passing architecture of JAUS, IOP-compliant software can be connected to other robotics middlewares through translating software bridges. Studies have shown, that IOP-compliant software can coexist with ROS-based robotics software.


See also

* Joint Architecture for Unmanned Systems (JAUS)


References

{{Reflist, 30em


External links


U.S. Army Project Manager Force Projection (PM FP)
Maintainers of the IOP
National Advanced Mobility Consortium (NAMC)
Publishers of the IOP Interoperability Unmanned ground combat vehicles Unmanned ground vehicles