In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, two figures or objects are congruent if they have the same
shape
A shape or figure is a graphics, graphical representation of an object or its external boundary, outline, or external Surface (mathematics), surface, as opposed to other properties such as color, Surface texture, texture, or material type.
A pl ...
and size, or if one has the same shape and size as the
mirror image
A mirror image (in a plane mirror) is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off from substances ...
of the other.
More formally, two sets of
points
Point or points may refer to:
Places
* Point, Lewis, a peninsula in the Outer Hebrides, Scotland
* Point, Texas, a city in Rains County, Texas, United States
* Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland
* Point ...
are called congruent if, and only if, one can be transformed into the other by an
isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
, i.e., a combination of
rigid motion
Rigid or rigidity may refer to:
Mathematics and physics
*Stiffness, the property of a solid body to resist deformation, which is sometimes referred to as rigidity
*Structural rigidity, a mathematical theory of the stiffness of ensembles of rig ...
s, namely a
translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
, a
rotation
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
, and a
reflection Reflection or reflexion may refer to:
Science and technology
* Reflection (physics), a common wave phenomenon
** Specular reflection, reflection from a smooth surface
*** Mirror image, a reflection in a mirror or in water
** Signal reflection, in ...
. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted.
In elementary geometry the word ''congruent'' is often used as follows. The word ''equal'' is often used in place of ''congruent'' for these objects.
*Two
line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
s are congruent if they have the same length.
*Two
angle
In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle.
Angles formed by two ...
s are congruent if they have the same measure.
*Two
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s are congruent if they have the same diameter.
In this sense, ''two plane figures are congruent'' implies that their corresponding characteristics are "congruent" or "equal" including not just their corresponding sides and angles, but also their corresponding diagonals, perimeters, and areas.
The related concept of
similarity applies if the objects have the same shape but do not necessarily have the same size. (Most definitions consider congruence to be a form of similarity, although a minority require that the objects have different sizes in order to qualify as similar.)
Determining congruence of polygons
For two polygons to be congruent, they must have an equal number of sides (and hence an equal number—the same number—of vertices). Two polygons with ''n'' sides are congruent if and only if they each have numerically identical sequences (even if clockwise for one polygon and counterclockwise for the other) side-angle-side-angle-... for ''n'' sides and ''n'' angles.
Congruence of polygons can be established graphically as follows:
*First, match and label the corresponding vertices of the two figures.
*Second, draw a vector from one of the vertices of the one of the figures to the corresponding vertex of the other figure. ''Translate'' the first figure by this vector so that these two vertices match.
*Third, ''rotate'' the translated figure about the matched vertex until one pair of
corresponding sides
In geometry, the tests for congruence and similarity involve comparing corresponding sides and corresponding angles of polygons. In these tests, each side and each angle in one polygon is paired with a side or angle in the second polygon, ta ...
matches.
*Fourth, ''reflect'' the rotated figure about this matched side until the figures match.
If at any time the step cannot be completed, the polygons are not congruent.
Congruence of triangles
Two
triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, an ...
s are congruent if their corresponding
sides are equal in length, and their corresponding
angle
In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle.
Angles formed by two ...
s are equal in measure.
Symbolically, we write the congruency and incongruency of two triangles and as follows:
::
:
In many cases it is sufficient to establish the equality of three corresponding parts and use one of the following results to deduce the congruence of the two triangles.
Determining congruence
Sufficient evidence for congruence between two triangles in
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
can be shown through the following comparisons:
*SAS (side-angle-side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then the triangles are congruent.
*SSS (side-side-side): If three pairs of sides of two triangles are equal in length, then the triangles are congruent.
*ASA (angle-side-angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent.
The ASA postulate was contributed by
Thales of Miletus
Thales of Miletus ( ; grc-gre, Θαλῆς; ) was a Greek mathematician, astronomer, statesman, and pre-Socratic philosopher from Miletus in Ionia, Asia Minor. He was one of the Seven Sages of Greece. Many, most notably Aristotle, regarded him ...
(Greek). In most systems of axioms, the three criteria – SAS, SSS and ASA – are established as
theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
s. In the
School Mathematics Study Group
The School Mathematics Study Group (SMSG) was an American academic think tank focused on the subject of reform in mathematics education. Directed by Edward G. Begle and financed by the National Science Foundation, the group was created in the wak ...
system SAS is taken as one (#15) of 22 postulates.
*AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°. ASA and AAS are sometimes combined into a single condition, AAcorrS – any two angles and a corresponding side.
*RHS (right-angle-hypotenuse-side), also known as HL (hypotenuse-leg): If two right-angled triangles have their hypotenuses equal in length, and a pair of other sides are equal in length, then the triangles are congruent.
Side-side-angle
The SSA condition (side-side-angle) which specifies two sides and a non-included angle (also known as ASS, or angle-side-side) does not by itself prove congruence. In order to show congruence, additional information is required such as the measure of the corresponding angles and in some cases the lengths of the two pairs of corresponding sides. There are a few possible cases:
If two triangles satisfy the SSA condition and the length of the side opposite the angle is greater than or equal to the length of the adjacent side (SSA, or long side-short side-angle), then the two triangles are congruent. The opposite side is sometimes longer when the corresponding angles are acute, but it is ''always'' longer when the corresponding angles are right or obtuse. Where the angle is a right angle, also known as the hypotenuse-leg (HL) postulate or the right-angle-hypotenuse-side (RHS) condition, the third side can be calculated using the
Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
thus allowing the SSS postulate to be applied.
If two triangles satisfy the SSA condition and the corresponding angles are acute and the length of the side opposite the angle is equal to the length of the adjacent side multiplied by the sine of the angle, then the two triangles are congruent.
If two triangles satisfy the SSA condition and the corresponding angles are acute and the length of the side opposite the angle is greater than the length of the adjacent side multiplied by the sine of the angle (but less than the length of the adjacent side), then the two triangles cannot be shown to be congruent. This is the
ambiguous case
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,
\frac \,=\, \frac \,=\, \frac \,=\, 2R,
where , and a ...
and two different triangles can be formed from the given information, but further information distinguishing them can lead to a proof of congruence.
Angle-angle-angle
In Euclidean geometry, AAA (angle-angle-angle) (or just AA, since in Euclidean geometry the angles of a triangle add up to 180°) does not provide information regarding the size of the two triangles and hence proves only
similarity and not congruence in Euclidean space.
However, in
spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
and
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
(where the sum of the angles of a triangle varies with size) AAA is sufficient for congruence on a given curvature of surface.
CPCTC
This
acronym
An acronym is a word or name formed from the initial components of a longer name or phrase. Acronyms are usually formed from the initial letters of words, as in ''NATO'' (''North Atlantic Treaty Organization''), but sometimes use syllables, as ...
stands for ''Corresponding Parts of Congruent Triangles are Congruent'', which is an abbreviated version of the definition of congruent triangles.
In more detail, it is a succinct way to say that if triangles and are congruent, that is,
:
with corresponding pairs of angles at vertices and ; and ; and and , and with corresponding pairs of sides and ; and ; and and , then the following statements are true:
:
:
:
:
:
:
The statement is often used as a justification in elementary geometry proofs when a conclusion of the congruence of parts of two triangles is needed after the congruence of the triangles has been established. For example, if two triangles have been shown to be congruent by the ''SSS'' criteria and a statement that corresponding angles are congruent is needed in a proof, then CPCTC may be used as a justification of this statement.
A related theorem is CPCFC, in which "triangles" is replaced with "figures" so that the theorem applies to any pair of
polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two toge ...
s or
polyhedron
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
A convex polyhedron is the convex hull of finitely many points, not all on th ...
s that are congruent.
Definition of congruence in analytic geometry
In a
Euclidean system, congruence is fundamental; it is the counterpart of equality for numbers. In
analytic geometry
In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.
Analytic geometry is used in physics and engineerin ...
, congruence may be defined intuitively thus: two mappings of figures onto one Cartesian coordinate system are congruent if and only if, for ''any'' two points in the first mapping, the
Euclidean distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.
It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefor ...
between them is equal to the Euclidean distance between the corresponding points in the second mapping.
A more formal definition states that two
subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s ''A'' and ''B'' of
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
R
''n'' are called congruent if there exists an
isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
''f'' : R
''n'' → R
''n'' (an element of the
Euclidean group
In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). ...
''E''(''n'')) with ''f''(''A'') = ''B''. Congruence is an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relation ...
.
Congruent conic sections
Two conic sections are congruent if their
eccentricities and one other distinct parameter characterizing them are equal. Their eccentricities establish their shapes, equality of which is sufficient to establish similarity, and the second parameter then establishes size. Since two
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s,
parabola
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.
One descript ...
s, or
rectangular hyperbola
In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
s always have the same eccentricity (specifically 0 in the case of circles, 1 in the case of parabolas, and
in the case of rectangular hyperbolas), two circles, parabolas, or rectangular hyperbolas need to have only one other common parameter value, establishing their size, for them to be congruent.
Congruent polyhedra
For two
polyhedra
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
A convex polyhedron is the convex hull of finitely many points, not all on t ...
with the same combinatorial type (that is, the same
number ''E'' of edges, the same number of
faces
The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
, and the same number of sides on corresponding faces), there exists a set of ''E'' measurements that can establish whether or not the polyhedra are congruent.
The number is tight, meaning that less than ''E'' measurements are not enough if the polyhedra are generic among their combinatorial type. But less measurements can work for special cases. For example,
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
s have 12 edges, but 9 measurements are enough to decide if a polyhedron of that combinatorial type is congruent to a given regular cube.
Congruent triangles on a sphere
As with plane triangles, on a sphere two triangles sharing the same sequence of angle-side-angle (ASA) are necessarily congruent (that is, they have three identical sides and three identical angles).
This can be seen as follows: One can situate one of the vertices with a given angle at the south pole and run the side with given length up the prime meridian. Knowing both angles at either end of the segment of fixed length ensures that the other two sides emanate with a uniquely determined trajectory, and thus will meet each other at a uniquely determined point; thus ASA is valid.
The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles).
[
The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles.] As in plane geometry, side-side-angle (SSA) does not imply congruence.
Notation
A symbol commonly used for congruence is an equals symbol with a tilde
The tilde () or , is a grapheme with several uses. The name of the character came into English from Spanish, which in turn came from the Latin '' titulus'', meaning "title" or "superscription". Its primary use is as a diacritic (accent) in ...
above it, ≅, corresponding to the Unicode
Unicode, formally The Unicode Standard,The formal version reference is is an information technology Technical standard, standard for the consistent character encoding, encoding, representation, and handling of Character (computing), text expre ...
character 'approximately equal to' (U+2245). In the UK, the three-bar equal sign ''≡'' (U+2261) is sometimes used.
See also
*Euclidean plane isometry In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, an ...
*Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
References
External links
The SSS
at Cut-the-Knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...
The SSA
at Cut-the-Knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...
* Interactive animations demonstratin
Congruent polygons
at Math Open Reference
{{Authority control
Euclidean geometry
Equivalence (mathematics)