
In
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, the torsion tensor is a
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
that is associated to any
affine connection
In differential geometry, an affine connection is a geometric object on a smooth manifold which ''connects'' nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values i ...
. The torsion tensor is a
bilinear map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.
A bilinear map can also be defined for ...
of two input vectors
, that produces an output vector
representing the displacement within a tangent space when the tangent space is developed (or "rolled") along an infinitesimal parallelogram whose sides are
. It is
skew symmetric in its inputs, because developing over the parallelogram in the opposite sense produces the opposite displacement, similarly to how a
screw
A screw is an externally helical threaded fastener capable of being tightened or released by a twisting force (torque) to the screw head, head. The most common uses of screws are to hold objects together and there are many forms for a variety ...
moves in opposite ways when it is twisted in two directions.
Torsion is particularly useful in the study of the geometry of
geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s. Given a system of parametrized geodesics, one can specify a class of affine connections having those geodesics, but differing by their torsions. There is a unique connection which ''absorbs the torsion'', generalizing the
Levi-Civita connection
In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...
to other, possibly non-metric situations (such as
Finsler geometry
In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold where a (possibly asymmetric) Minkowski norm is provided on each tangent space , that enables one to define the length of any smooth curve as ...
). The difference between a connection with torsion, and a corresponding connection without torsion is a tensor, called the
contorsion tensor The contorsion tensor in differential geometry is the difference between a connection with and without torsion in it. It commonly appears in the study of spin connections. Thus, for example, a vielbein together with a spin connection, when subje ...
. Absorption of torsion also plays a fundamental role in the study of
G-structure
In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''.
The notion of ''G''-structures includes vario ...
s and
Cartan's equivalence method. Torsion is also useful in the study of unparametrized families of geodesics, via the associated
projective connection In differential geometry, a projective connection is a type of Cartan connection on a differentiable manifold.
The structure of a projective connection is modeled on the geometry of projective space, rather than the affine space corresponding to a ...
. In
relativity theory
The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phe ...
, such ideas have been implemented in the form of
Einstein–Cartan theory
In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation, one of several alternatives to general relativity. The theory was first proposed by Élie C ...
.
Definition
Let ''M'' be a manifold with an
affine connection
In differential geometry, an affine connection is a geometric object on a smooth manifold which ''connects'' nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values i ...
on the
tangent bundle
A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
(aka
covariant derivative
In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to:
Statistics
* Covariance matrix, a matrix of covariances between a number of variables
* Covariance or cross-covariance between ...
) ∇. The torsion tensor (sometimes called the ''Cartan'' (''torsion'') ''tensor'') of ∇ is the
vector-valued 2-form defined on
vector field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
s ''X'' and ''Y'' by
: