Topological Charge
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or
soliton In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium ...
-type solutions of some set of
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s modeling a physical system, as the solitons themselves owe their stability to topological considerations. The specific "topological considerations" are usually due to the appearance of the
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
or a higher-dimensional
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotop ...
in the description of the problem, quite often because the boundary, on which the
boundary conditions In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to th ...
are specified, has a non-trivial homotopy group that is preserved by the differential equations. The topological quantum number of a solution is sometimes called the winding number of the solution, or, more precisely, it is the degree of a continuous mapping. Recent ideas about the nature of
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of ...
s indicates that topological quantum numbers, and their associated solutions, can be created or destroyed during a phase transition.


Particle physics

In
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, an example is given by the
Skyrmion In particle theory, the skyrmion () is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by (and named after) Tony Skyrme in 1961. As a topological solito ...
, for which the baryon number is a topological quantum number. The origin comes from the fact that the isospin is modelled by SU(2), which is isomorphic to the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensi ...
S^3 and S^3 inherits the group structure of SU(2) through its bijective association, so the isomorphism is in the category of topological groups. By taking real three-dimensional space, and
closing Closing may refer to: Business and law * Closing (law), a closing argument, a summation * Closing (real estate), the final step in executing a real estate transaction * Closing (sales), the process of making a sale * Closure (business), Closing a ...
it with a point at infinity, one also gets a 3-sphere. Solutions to Skyrme's equations in real three-dimensional space map a point in "real" (physical; Euclidean) space to a point on the 3-manifold SU(2). Topologically distinct solutions "wrap" the one sphere around the other, such that one solution, no matter how it is deformed, cannot be "unwrapped" without creating a discontinuity in the solution. In physics, such discontinuities are associated with infinite energy, and are thus not allowed. In the above example, the topological statement is that the 3rd homotopy group of the three sphere is :\pi_3(S^3)=\mathbb and so the baryon number can only take on integer values. A generalization of these ideas is found in the
Wess–Zumino–Witten model In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edwa ...
.


Exactly solvable models

Additional examples can be found in the domain of
exactly solvable model In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first ...
s, such as the
sine-Gordon equation The sine-Gordon equation is a nonlinear hyperbolic partial differential equation in 1 + 1 dimensions involving the d'Alembert operator and the sine of the unknown function. It was originally introduced by in the course of study of surfa ...
, the Korteweg–de Vries equation, and the Ishimori equation. The one-dimensional sine-Gordon equation makes for a particularly simple example, as the fundamental group at play there is :\pi_1(S^1)=\mathbb and so is literally a winding number: a circle can be wrapped around a circle an integer number of times. Quantum sine-Gordon model is equivalent to massive
Thirring model The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. Definition The Thirring model is given by the Lagrangian density : \mathcal= \overline(i\partial\!\!\!/ ...
. Fundamental excitations are fermions: topological quantum number \mathbb is the number of fermions. After quantization of sine-Gordon model the topological charge become 'fractional'. Consistent consideration of ultraviolet renormalization shows that a fractional number of fermions repelled over the ultraviolet cutoff. So the \mathbb gets multiplied by a fractional number depending on Planck constant.


Solid state physics

In
solid state physics Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
, certain types of crystalline
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
s, such as screw dislocations, can be described by topological solitons. An example includes screw-type dislocations associated with
Germanium whisker Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
s.


See also

*
Inverse scattering transform In mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solv ...
* Central charge * Quantum invariant * Quantum topology * Topological defect *
Topological entropy in physics The topological entanglement entropy or ''topological entropy'', usually denoted by \gamma, is a number characterizing many-body states that possess topological order. A non-zero topological entanglement entropy reflects the presence of long ran ...
* Topological order *
Topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathem ...
*
Topological string theory In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological qu ...


References

* {{DEFAULTSORT:Topological Quantum Number Exactly solvable models Quantum field theory