Top Quark Condensation
   HOME

TheInfoList



OR:

In
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, the top quark condensate theory (or top condensation) is an alternative to the Standard Model fundamental
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
, where the Higgs boson is a composite field, composed of the
top quark The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard ...
and its antiquark. The
top quark The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard ...
- antiquark pairs are bound together by a new force called
topcolor Topcolor is a model in theoretical physics, of dynamical electroweak symmetry breaking in which the top quark and anti-top quark form a composite Higgs boson by a new force arising from massive "top gluons". The solution to composite Higgs model ...
, analogous to the binding of
Cooper pairs In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Coope ...
in a BCS superconductor, or mesons in the strong interactions. The top quark is very heavy, with a measured mass of approximately 174 
GeV GEV may refer to: * ''G.E.V.'' (board game), a tabletop game by Steve Jackson Games * Ashe County Airport, in North Carolina, United States * Gällivare Lapland Airport, in Sweden * Generalized extreme value distribution * Gev Sella, Israeli-Sou ...
(comparable to the
electroweak scale In particle physics, the electroweak scale, also known as the Fermi scale, is the energy scale around 246 GeV, a typical energy of processes described by the electroweak theory. The particular number 246 GeV is taken to be the vacuum expectation ...
), and so its Yukawa coupling is of order unity, suggesting the possibility of strong coupling dynamics at high energy scales. This model attempts to explain how the
electroweak scale In particle physics, the electroweak scale, also known as the Fermi scale, is the energy scale around 246 GeV, a typical energy of processes described by the electroweak theory. The particular number 246 GeV is taken to be the vacuum expectation ...
may match the top quark mass.


History

The idea was described by
Yoichiro Nambu was a Japanese-American physicist and professor at the University of Chicago. Known for his contributions to the field of theoretical physics, he was awarded half of the Nobel Prize in Physics in 2008 for the discovery in 1960 of the mechanism ...
and subsequently developed by Miransky, Tanabashi, and Yamawaki (1989) and Bardeen, Hill, and Lindner (1990), who connected the theory to the
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the ...
, and improved its predictions. The renormalization group reveals that top quark condensation is fundamentally based upon the ‘''
infrared fixed point In physics, an infrared fixed point is a set of coupling constants, or other parameters, that evolve from initial values at very high energies (short distance) to fixed stable values, usually predictable, at low energies (large distance). This usu ...
''’ for the top quark Higgs-Yukawa coupling, proposed by Pendleton and Ross (1981). and Hill, The ‘infrared’ fixed point originally predicted that the top quark would be heavy, contrary to the prevailing view of the early 1980s. Indeed, the
top quark The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard ...
was discovered in 1995 at the large mass of 174 GeV. The infrared-fixed point implies that it is strongly coupled to the Higgs boson at very high energies, corresponding to the
Landau pole In physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the phy ...
of the Higgs-Yukawa coupling. At this high scale a bound-state Higgs forms, and in the ‘infrared’, the coupling relaxes to its measured value of order unity by the
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the ...
. The Standard Model
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the ...
fixed point prediction is about 220 GeV, and the observed top mass is roughly 20% lower than this prediction. The simplest top condensation models are now ruled out by the LHC discovery of the Higgs boson at a mass scale of 125 GeV. However, extended versions of the theory, introducing more particles, can be consistent with the observed top quark and Higgs boson masses.


Future

The composite Higgs boson arises naturally in
Topcolor Topcolor is a model in theoretical physics, of dynamical electroweak symmetry breaking in which the top quark and anti-top quark form a composite Higgs boson by a new force arising from massive "top gluons". The solution to composite Higgs model ...
models, that are extensions of the standard model using a new force analogous to quantum chromodynamics. To be natural, without excessive fine-tuning (i.e. to stabilize the Higgs mass from large radiative corrections), the theory requires new physics at a relatively low energy scale. Placing new physics at 10 TeV, for instance, the model predicts the top quark to be significantly heavier than observed (at about 600 GeV vs. 171 GeV). ''Top Seesaw'' models, also based upon
Topcolor Topcolor is a model in theoretical physics, of dynamical electroweak symmetry breaking in which the top quark and anti-top quark form a composite Higgs boson by a new force arising from massive "top gluons". The solution to composite Higgs model ...
, circumvent this difficulty. The predicted top quark mass comes into improved agreement with the fixed point if there are many additional Higgs scalars beyond the standard model. This may be indicating a rich spectroscopy of new composite Higgs fields at energy scales that can be probed with the LHC and its upgrades. The general idea of a composite Higgs boson, connected in a fundamental way to the top quark, remains compelling, though the full details may not yet be understood.


See also

*
Bose–Einstein condensation Bose–Einstein may refer to: * Bose–Einstein condensate ** Bose–Einstein condensation (network theory) * Bose–Einstein correlations * Bose–Einstein statistics In quantum statistics, Bose–Einstein statistics (B–E statistics) describe ...
*
Fermion condensate A fermionic condensate or Fermi–Dirac condensate is a superfluid phase formed by fermionic particles at low temperatures. It is closely related to the Bose–Einstein condensate, a superfluid phase formed by bosonic atoms under similar condi ...
* Hierarchy problem *
Technicolor (physics) Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynam ...


References

{{Quantum field theories Physics beyond the Standard Model