Tide Locked
   HOME

TheInfoList



OR:

Tidal locking between a pair of co- orbiting astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its
rotation rate Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc. The symbol for ...
over the course of a complete orbit. In the case where a tidally locked body possesses synchronous rotation, the object takes just as long to rotate around its own axis as it does to revolve around its partner. For example, the same side of the Moon always faces the Earth, although there is some variability because the Moon's orbit is not perfectly circular. Usually, only the satellite is tidally locked to the larger body. However, if both the difference in mass between the two bodies and the distance between them are relatively small, each may be tidally locked to the other; this is the case for Pluto and
Charon In Greek mythology, Charon or Kharon (; grc, Χάρων) is a psychopomp, the ferryman of Hades, the Greek underworld. He carries the souls of those who have been given funeral rites across the rivers Acheron and Styx, which separate the wo ...
. Alternative names for the tidal locking process are gravitational locking, captured rotation, and spin–orbit locking. The effect arises between two bodies when their gravitational interaction slows a body's rotation until it becomes tidally locked. Over many millions of years, the interaction forces changes to their orbits and rotation rates as a result of energy exchange and heat dissipation. When one of the bodies reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit, it is said to be tidally locked. The object tends to stay in this state because leaving it would require adding energy back into the system. The object's orbit may migrate over time so as to undo the tidal lock, for example, if a giant planet perturbs the object. Not every case of tidal locking involves synchronous rotation. With
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
, for example, this tidally locked planet completes three rotations for every two revolutions around the Sun, a 3:2 spin–orbit resonance. In the special case where an orbit is nearly circular and the body's rotation axis is not significantly tilted, such as the Moon, tidal locking results in the same hemisphere of the revolving object constantly facing its partner. However, in this case the exact same portion of the body does not always face the partner on all orbits. There can be some shifting due to variations in the locked body's orbital velocity and the inclination of its rotation axis.


Mechanism

Consider a pair of co-orbiting objects, A and B. The change in
rotation rate Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc. The symbol for ...
necessary to tidally lock body B to the larger body A is caused by the torque applied by A's gravity on bulges it has induced on B by tidal forces. The gravitational force from object A upon B will vary with distance, being greatest at the nearest surface to A and least at the most distant. This creates a gravitational gradient across object B that will distort its equilibrium shape slightly. The body of object B will become elongated along the axis oriented toward A, and conversely, slightly reduced in dimension in directions
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
to this axis. The elongated distortions are known as tidal bulges. (For the solid Earth, these bulges can reach displacements of up to around .) When B is not yet tidally locked, the bulges travel over its surface due to orbital motions, with one of the two "high" tidal bulges traveling close to the point where body A is overhead. For large astronomical bodies that are nearly spherical due to self-gravitation, the tidal distortion produces a slightly prolate spheroid, i.e. an axially symmetric
ellipsoid An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a surface that may be defined as the ...
that is elongated along its major axis. Smaller bodies also experience distortion, but this distortion is less regular. The material of B exerts resistance to this periodic reshaping caused by the tidal force. In effect, some time is required to reshape B to the gravitational equilibrium shape, by which time the forming bulges have already been carried some distance away from the A–B axis by B's rotation. Seen from a vantage point in space, the points of maximum bulge extension are displaced from the axis oriented toward A. If B's rotation period is shorter than its orbital period, the bulges are carried forward of the axis oriented toward A in the direction of rotation, whereas if B's rotation period is longer, the bulges instead lag behind. Because the bulges are now displaced from the A–B axis, A's gravitational pull on the mass in them exerts a torque on B. The torque on the A-facing bulge acts to bring B's rotation in line with its orbital period, whereas the "back" bulge, which faces away from A, acts in the opposite sense. However, the bulge on the A-facing side is closer to A than the back bulge by a distance of approximately B's diameter, and so experiences a slightly stronger gravitational force and torque. The net resulting torque from both bulges, then, is always in the direction that acts to synchronize B's rotation with its orbital period, leading eventually to tidal locking.


Orbital changes

The angular momentum of the whole A–B system is conserved in this process, so that when B slows down and loses rotational angular momentum, its ''orbital'' angular momentum is boosted by a similar amount (there are also some smaller effects on A's rotation). This results in a raising of B's orbit about A in tandem with its rotational slowdown. For the other case where B starts off rotating too slowly, tidal locking both speeds up its rotation, and ''lowers'' its orbit.


Locking of the larger body

The tidal locking effect is also experienced by the larger body A, but at a slower rate because B's gravitational effect is weaker due to B's smaller mass. For example, Earth's rotation is gradually being slowed by the Moon, by an amount that becomes noticeable over geological time as revealed in the fossil record. Current estimations are that this (together with the tidal influence of the Sun) has helped lengthen the Earth day from about 6 hours to the current 24 hours (over ≈ ⁠4½ billion years). Currently, atomic clocks show that Earth's day lengthens, on average, by about 2.3 milliseconds per century. Given enough time, this would create a mutual tidal locking between Earth and the Moon. The length of the Earth's
day A day is the time period of a full rotation of the Earth with respect to the Sun. On average, this is 24 hours, 1440 minutes, or 86,400 seconds. In everyday life, the word "day" often refers to a solar day, which is the length between two so ...
would increase and the length of a lunar month would also increase. The Earth's sidereal day would eventually have the same length as the Moon's orbital period, about 47 times the length of the Earth's day at present. However, Earth is not expected to become tidally locked to the Moon before the Sun becomes a
red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or ...
and engulfs Earth and the Moon. For bodies of similar size the effect may be of comparable size for both, and both may become tidally locked to each other on a much shorter timescale. An example is the dwarf planet Pluto and its satellite
Charon In Greek mythology, Charon or Kharon (; grc, Χάρων) is a psychopomp, the ferryman of Hades, the Greek underworld. He carries the souls of those who have been given funeral rites across the rivers Acheron and Styx, which separate the wo ...
. They have already reached a state where Charon is visible from only one hemisphere of Pluto and vice versa.


Eccentric orbits

For orbits that do not have an eccentricity close to zero, the
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
rate tends to become locked with the orbital speed when the body is at periapsis, which is the point of strongest tidal interaction between the two objects. If the orbiting object has a companion, this third body can cause the rotation rate of the parent object to vary in an oscillatory manner. This interaction can also drive an increase in orbital eccentricity of the orbiting object around the primary – an effect known as eccentricity pumping. In some cases where the orbit is
eccentric Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-center, in geometry * Eccentricity (graph theory) of a v ...
and the tidal effect is relatively weak, the smaller body may end up in a so-called ''spin–orbit resonance'', rather than being tidally locked. Here, the ratio of the rotation period of a body to its own orbital period is some simple fraction different from 1:1. A well known case is the rotation of
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
, which is locked to its own orbit around the Sun in a 3:2 resonance. This results in the rotation speed roughly matching the orbital speed around perihelion. Many
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s (especially the close-in ones) are expected to be in spin–orbit resonances higher than 1:1. A Mercury-like terrestrial planet can, for example, become captured in a 3:2, 2:1, or 5:2 spin–orbit resonance, with the probability of each being dependent on the orbital eccentricity.


Occurrence


Moons

All twenty known moons in the Solar System that are List of gravitationally rounded objects of the Solar System, large enough to be round are tidally locked with their primaries, because they orbit very closely and tidal force increases rapidly (as a cubic function) with decreasing distance. On the other hand, the irregular satellite, irregular outer satellites of the gas giants (e.g. Phoebe (moon), Phoebe), which orbit much farther away than the large well-known moons, are not tidally locked. Pluto and
Charon In Greek mythology, Charon or Kharon (; grc, Χάρων) is a psychopomp, the ferryman of Hades, the Greek underworld. He carries the souls of those who have been given funeral rites across the rivers Acheron and Styx, which separate the wo ...
are an extreme example of a tidal lock. Charon is a relatively large moon in comparison to its primary and also has a very close orbit. This results in Pluto and Charon being mutually tidally locked. Pluto's other moons are not tidally locked; Styx (moon), Styx, Nix (moon), Nix, Kerberos (moon), Kerberos, and Hydra (moon), Hydra all rotate chaos theory, chaotically due to the influence of Charon. Similarly, and Dysnomia (moon), Dysnomia are mutually tidally locked. The tidal locking situation for asteroid moons is largely unknown, but closely orbiting binaries are expected to be tidally locked, as well as Contact binary (asteroid), contact binaries.


Earth's Moon

Earth's Moon's rotation and orbital periods are tidally locked with each other, so no matter when the Moon is observed from Earth, the same hemisphere of the Moon is always seen. The Far side (Moon), far side of the Moon was not seen until 1959, when photographs of most of the far side were transmitted from the Soviet Union, Soviet spacecraft ''Luna 3''. When the Earth is observed from the Moon, the Earth does not appear to move across the sky. It remains in the same place while showing nearly all its surface as it rotates on its axis. Despite the Moon's rotational and orbital periods being exactly locked, about 59 percent of the Moon's total surface may be seen with repeated observations from Earth, due to the phenomena of libration and parallax. Librations are primarily caused by the Moon's varying orbital speed due to the eccentricity (orbit), eccentricity of its orbit: this allows up to about 6° more along its perimeter to be seen from Earth. Parallax is a geometric effect: at the surface of Earth observers are offset from the line through the centers of Earth and Moon, and because of this about 1° more can be seen around the side of the Moon when it is on the local horizon.


Planets

It was thought for some time that
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
was in synchronous rotation with the Sun. This was because whenever Mercury was best placed for observation, the same side faced inward. Radar observations in 1965 demonstrated instead that Mercury has a 3:2 spin–orbit resonance, rotating three times for every two revolutions around the Sun, which results in the same positioning at those observation points. Modeling has demonstrated that Mercury was captured into the 3:2 spin–orbit state very early in its history, probably within 10–20 million years after its formation. The 583.92-day interval between successive close approaches of Venus to Earth is equal to 5.001444 Venusian solar days, making approximately the same face visible from Earth at each close approach. Whether this relationship arose by chance or is the result of some kind of tidal locking with Earth is unknown. The
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
Proxima Centauri b, discovered in 2016 that orbits around Proxima Centauri, is almost assuredly tidally locked, expressing either synchronized rotation or a 3:2 spin–orbit resonance like that of Mercury. One form of hypothetical tidally locked
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s are eyeball planets, which in turn are divided into "hot" and "cold" eyeball planets.


Stars

Close binary stars throughout the universe are expected to be tidally locked with each other, and extrasolar planets that have been found to orbit their primaries extremely closely are also thought to be tidally locked to them. An unusual example, confirmed by MOST (satellite), MOST, may be Tau Boötis, a star that is probably tidally locked by its planet Tau Boötis b. If so, the tidal locking is almost certainly mutual.


Timescale

An estimate of the time for a body to become tidally locked can be obtained using the following formula: : t_ \approx \frac where * \omega\, is the initial spin rate expressed in radians Radian per second, per second, * a\, is the semi-major axis of the motion of the satellite around the planet (given by the average of the periapsis and apoapsis distances), * I\, \approx 0.4\; m_s R^2 is the moment of inertia of the satellite, where m_s is the mass of the satellite and R is the mean radius of the satellite, * Q\, is the dissipation function of the satellite, * G\, is the gravitational constant, * m_p\, is the mass of the planet (i.e., the object being orbited), and * k_2\, is the tidal Love number of the satellite. Q and k_2 are generally very poorly known except for the Moon, which has k_2/Q=0.0011. For a really rough estimate it is common to take Q \approx 100 (perhaps conservatively, giving overestimated locking times), and : k_2 \approx \frac, where * \rho\, is the density of the satellite * g\approx Gm_s/R^2 is the surface gravity of the satellite * \mu\, is the rigidity of the satellite. This can be roughly taken as 3 N·m−2 for rocky objects and 4 N·m−2 for icy ones. Even knowing the size and density of the satellite leaves many parameters that must be estimated (especially ''ω'', ''Q'', and ''μ''), so that any calculated locking times obtained are expected to be inaccurate, even to factors of ten. Further, during the tidal locking phase the semi-major axis a may have been significantly different from that observed nowadays due to subsequent tidal acceleration, and the locking time is extremely sensitive to this value. Because the uncertainty is so high, the above formulas can be simplified to give a somewhat less cumbersome one. By assuming that the satellite is spherical, k_2\ll1\, , Q = 100, and it is sensible to guess one revolution every 12 hours in the initial non-locked state (most asteroids have rotational periods between about 2 hours and about 2 days) : t_ \approx 6\ \frac \times 10^\ \text, with masses in kilograms, distances in meters, and \mu in newtons per meter squared; \mu can be roughly taken as 3 N·m−2 for rocky objects and 4 N·m−2 for icy ones. There is an extremely strong dependence on semi-major axis a. For the locking of a primary body to its satellite as in the case of Pluto, the satellite and primary body parameters can be swapped. One conclusion is that, ''other things being equal'' (such as Q and \mu), a large moon will lock faster than a smaller moon at the same orbital distance from the planet because m_s\, grows as the cube of the satellite radius R. A possible example of this is in the Saturn system, where Hyperion (moon), Hyperion is not tidally locked, whereas the larger Iapetus (moon), Iapetus, which orbits at a greater distance, is. However, this is not clear cut because Hyperion also experiences strong driving from the nearby Titan (moon), Titan, which forces its rotation to be chaotic. The above formulae for the timescale of locking may be off by orders of magnitude, because they ignore the frequency dependence of k_2/Q. More importantly, they may be inapplicable to viscous binaries (double stars, or double asteroids that are rubble), because the spin–orbit dynamics of such bodies is defined mainly by their viscosity, not rigidity.


List of known tidally locked bodies


Solar System


Extra-solar

* The most successful detection methods of exoplanets (transits and radial velocities) suffer from a clear observational bias favoring the detection of planets near the star; thus, 85% of the exoplanets detected are inside the tidal locking zone, which makes it difficult to estimate the true incidence of this phenomenon. Tau Boötis is known to be locked to the close-orbiting giant planet Tau Boötis b.


Bodies likely to be locked


Solar System

Based on comparison between the likely time needed to lock a body to its primary, and the time it has been in its present orbit (comparable with the age of the Solar System for most planetary moons), a number of moons are thought to be locked. However their rotations are not known or not known enough. These are:


Probably locked to Saturn

* Daphnis (moon), Daphnis * Aegaeon (moon), Aegaeon * Methone (moon), Methone * Anthe (moon), Anthe * Pallene (moon), Pallene * Helene (moon), Helene * Polydeuces (moon), Polydeuces


Probably locked to Uranus

* Cordelia (moon), Cordelia * Ophelia (moon), Ophelia * Bianca (moon), Bianca * Cressida (moon), Cressida * Desdemona (moon), Desdemona * Juliet (moon), Juliet * Portia (moon), Portia * Rosalind (moon), Rosalind * Cupid (moon), Cupid * Belinda (moon), Belinda * Perdita (moon), Perdita * Puck (moon), Puck * Mab (moon), Mab


Probably locked to Neptune

* Naiad (moon), Naiad * Thalassa (moon), Thalassa * Despina (moon), Despina * Galatea (moon), Galatea * Larissa (moon), Larissa


Extrasolar

* Gliese 581c, Gliese 581g, Gliese 581b, and Gliese 581e may be tidally locked to their parent star Gliese 581. Gliese 581d is almost certainly captured either into the 2:1 or the 3:2 spin–orbit resonance with the same star. * All planets in the TRAPPIST-1 system are likely to be tidally locked.


See also

* * Earth tide#Effects * * * * * * *


References

{{DEFAULTSORT:Tidal Locking Celestial mechanics Orbits Tidal forces, Locking