Thorium dioxide (ThO
2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is produced mainly as a by-product of
lanthanide and
uranium
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly ...
production.
[ Thorianite is the name of the mineralogical form of ]thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten
Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
and carbon
Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes ...
) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds, including the dioxide, are radioactive because there are no stable isotopes of thorium.
Structure and reactions
Thoria exists as two polymorphs. One has a fluorite
Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon.
The Mohs sca ...
crystal structure. This is uncommon among binary dioxides. (Other binary oxides with fluorite structure include cerium dioxide, uranium dioxide and plutonium dioxide.) The band gap
In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
of thoria is about 6 eV. A tetragonal form of thoria is also known.
Thorium dioxide is more stable than thorium monoxide (ThO). Only with careful control of reaction conditions can oxidation of thorium metal give the monoxide rather than the dioxide. At extremely high temperatures, the dioxide can convert to the monoxide either by a disproportionation reaction (equilibrium with liquid thorium metal) above or by simple dissociation (evolution of oxygen) above .
Applications
Nuclear fuels
Thorium dioxide (thoria) can be used in nuclear reactors as ceramic fuel pellets, typically contained in nuclear fuel rods clad with zirconium alloys. Thorium is not fissile (but is "fertile", breeding fissile uranium-233
Uranium-233 (233U or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. It has been used successfully in ex ...
under neutron bombardment); hence, it must be used as a nuclear reactor fuel in conjunction with fissile isotopes of either uranium or plutonium. This can be achieved by blending thorium with uranium or plutonium, or using it in its pure form in conjunction with separate fuel rods containing uranium or plutonium. Thorium dioxide offers advantages over conventional uranium dioxide fuel pellets, because of its higher thermal conductivity (lower operating temperature), considerably higher melting point, and chemical stability (does not oxidize in the presence of water/oxygen, unlike uranium dioxide).
Thorium dioxide can be turned into a nuclear
Nuclear may refer to:
Physics
Relating to the nucleus of the atom:
*Nuclear engineering
*Nuclear physics
*Nuclear power
*Nuclear reactor
*Nuclear weapon
*Nuclear medicine
*Radiation therapy
*Nuclear warfare
Mathematics
*Nuclear space
* Nuclear ...
fuel by breeding it into uranium-233 (see below and refer to the article on thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
for more information on this). The high thermal stability of thorium dioxide allows applications in flame spraying and high-temperature ceramics.
Alloys
Thorium dioxide is used as a stabilizer in tungsten
Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
electrodes in TIG welding, electron tubes, and aircraft gas turbine engines. As an alloy, thoriated tungsten metal is not easily deformed because the high-fusion material thoria augments the high-temperature mechanical properties, and thorium helps stimulate the emission of electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary partic ...
s (thermion
Thermionic emission is the liberation of electrons from an electrode by virtue of its temperature (releasing of energy supplied by heat). This occurs because the thermal energy given to the charge carrier overcomes the work function of the mate ...
s). It is the most popular oxide additive because of its low cost, but is being phased out in favor of non-radioactive elements such as cerium, lanthanum and zirconium
Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
.
Thoria dispersed nickel finds its applications in various high temperature operations like combustion engines because it is a good creep resistant material. It can also be used for hydrogen trapping.
Catalysis
Thorium dioxide has almost no value as a commercial catalyst, but such applications have been well investigated. It is a catalyst in the Ruzicka large ring synthesis. Other applications that have been explored include petroleum cracking, conversion of ammonia
Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogeno ...
to nitric acid
Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available ni ...
and preparation of sulfuric acid.[Stoll, Wolfgang (2012) "Thorium and Thorium Compounds" in ''Ullmann's Encyclopedia of Industrial Chemistry''. Wiley-VCH, Weinheim. ]
Radiocontrast agents
Thorium dioxide was the primary ingredient in Thorotrast, a once-common radiocontrast agent used for cerebral angiography, however, it causes a rare form of cancer (hepatic angiosarcoma) many years after administration. This use was replaced with injectable iodine or ingestable barium sulfate suspension as standard X-ray
X-rays (or rarely, ''X-radiation'') are a form of high-energy electromagnetic radiation. In many languages, it is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it in 1895 and named it ' ...
contrast agents.
Lamp mantles
Another major use in the past was in gas mantle
A Coleman white gas lantern mantle glowing at full brightness
An incandescent gas mantle, gas mantle or Welsbach mantle is a device for generating incandescent bright white light when heated by a flame. The name refers to its original heat so ...
of lanterns developed by Carl Auer von Welsbach in 1890, which are composed of 99 percent ThO2 and 1% cerium(IV) oxide. Even as late as the 1980s it was estimated that about half of all ThO2 produced (several hundred tonnes per year) was used for this purpose. Some mantles still use thorium, but yttrium oxide (or sometimes zirconium oxide
Zirconium dioxide (), sometimes known as zirconia (not to be confused with zircon), is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant sta ...
) is used increasingly as a replacement.
Glass manufacture
When added to glass
Glass is a non-Crystallinity, crystalline, often transparency and translucency, transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most ...
, thorium dioxide helps increase its refractive index
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.
The refractive index determines how much the path of light is bent, o ...
and decrease dispersion. Such glass finds application in high-quality lenses
A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements ...
for cameras and scientific instruments. The radiation from these lenses can darken them and turn them yellow over a period of years and degrade film, but the health risks are minimal. Yellowed lenses may be restored to their original colourless state by lengthy exposure to intense ultraviolet radiation. Thorium dioxide has since been replaced by rare-earth oxides such as lanthanum oxide in almost all modern high-index glasses, as they provide similar effects and are not radioactive.
References
Cited sources
*
{{Authority control
Hepatotoxins
Oxides
Thorium compounds
Refractory materials
Fluorite crystal structure