HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, ramification is 'branching out', in the way that the
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
function, for
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a
covering map A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete spa ...
degenerates at a point of a space, with some collapsing of the fibers of the mapping.


In complex analysis

In complex analysis, the basic model can be taken as the ''z'' → ''z''''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ver ...
theory, of ramification of order ''n''. It occurs for example in the
Riemann–Hurwitz formula In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ''ramified covering'' of the other. It therefore connects ramif ...
for the effect of mappings on the
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nom ...
. See also
branch point In the mathematical field of complex analysis, a branch point of a multi-valued function (usually referred to as a "multifunction" in the context of complex analysis) is a point such that if the function is n-valued (has n values) at that point, ...
.


In algebraic topology

In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''''n'' mapping shows this as a local pattern: if we exclude 0, looking at 0 < , ''z'', < 1 say, we have (from the
homotopy In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a defor ...
point of view) the
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
mapped to itself by the ''n''-th power map (Euler–Poincaré characteristic 0), but with the whole disk the Euler–Poincaré characteristic is 1, ''n'' – 1 being the 'lost' points as the ''n'' sheets come together at ''z'' = 0. In geometric terms, ramification is something that happens in ''codimension two'' (like knot theory, and monodromy); since ''real'' codimension two is ''complex'' codimension one, the local complex example sets the pattern for higher-dimensional complex manifolds. In complex analysis, sheets can't simply fold over along a line (one variable), or codimension one subspace in the general case. The ramification set (branch locus on the base, double point set above) will be two real dimensions lower than the ambient manifold, and so will not separate it into two 'sides', locally―there will be paths that trace round the branch locus, just as in the example. In algebraic geometry over any
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
, by analogy, it also happens in algebraic codimension one.


In algebraic number theory


In algebraic extensions of \mathbb

Ramification in algebraic number theory means a prime ideal factoring in an extension so as to give some repeated prime ideal factors. Namely, let \mathcal_K be the ring of integers of an algebraic number field K, and \mathfrak a prime ideal of \mathcal_K. For a field extension L/K we can consider the ring of integers \mathcal_L (which is the integral closure of \mathcal_K in L), and the ideal \mathfrak\mathcal_L of \mathcal_L. This ideal may or may not be prime, but for finite :K/math>, it has a factorization into prime ideals: :\mathfrak\cdot \mathcal_L = \mathfrak_1^\cdots\mathfrak_k^ where the \mathfrak_i are distinct prime ideals of \mathcal_L. Then \mathfrak is said to ramify in L if e_i > 1 for some i; otherwise it is . In other words, \mathfrak ramifies in L if the ramification index e_i is greater than one for some \mathfrak_i. An equivalent condition is that \mathcal_L/\mathfrak\mathcal_L has a non-zero
nilpotent In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the cla ...
element: it is not a product of
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
s. The analogy with the Riemann surface case was already pointed out by Richard Dedekind and Heinrich M. Weber in the nineteenth century. The ramification is encoded in K by the relative discriminant and in L by the
relative different In algebraic number theory, the different ideal (sometimes simply the different) is defined to measure the (possible) lack of duality in the ring of integers of an algebraic number field ''K'', with respect to the field trace. It then encodes th ...
. The former is an ideal of \mathcal_K and is divisible by \mathfrak if and only if some ideal \mathfrak_i of \mathcal_L dividing \mathfrak is ramified. The latter is an ideal of \mathcal_L and is divisible by the prime ideal \mathfrak_i of \mathcal_L precisely when \mathfrak_i is ramified. The ramification is tame when the ramification indices e_i are all relatively prime to the residue characteristic ''p'' of \mathfrak, otherwise wild. This condition is important in
Galois module In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring ...
theory. A finite generically étale extension B/A of
Dedekind domain In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
s is tame if and only if the trace \operatorname: B \to A is surjective.


In local fields

The more detailed analysis of ramification in number fields can be carried out using extensions of the
p-adic number In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensi ...
s, because it is a ''local'' question. In that case a quantitative measure of ramification is defined for
Galois extension In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ' ...
s, basically by asking how far the
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
moves field elements with respect to the metric. A sequence of
ramification group In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension. Ramificat ...
s is defined, reifying (amongst other things) ''wild'' (non-tame) ramification. This goes beyond the geometric analogue.


In algebra

In
valuation theory In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size i ...
, the
ramification theory of valuations Ramification may refer to: * Ramification (mathematics), a geometric term used for 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. * Ramification (botany), the div ...
studies the set of
extensions Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * E ...
of a valuation of a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''K'' to an
extension field In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
of ''K''. This generalizes the notions in algebraic number theory, local fields, and Dedekind domains.


In algebraic geometry

There is also corresponding notion of
unramified morphism In algebraic geometry, an unramified morphism is a morphism f: X \to Y of schemes such that (a) it is locally of finite presentation and (b) for each x \in X and y = f(x), we have that # The residue field k(x) is a separable algebraic extension of ...
in algebraic geometry. It serves to define
étale morphism In algebraic geometry, an étale morphism () is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy t ...
s. Let f: X \to Y be a morphism of schemes. The support of the quasicoherent sheaf \Omega_ is called the ramification locus of f and the image of the ramification locus, f\left( \operatorname \Omega_ \right), is called the branch locus of f. If \Omega_=0 we say that f is formally unramified and if f is also of locally finite presentation we say that f is unramified (see ).


See also

*
Eisenstein polynomial In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials wi ...
*
Newton polygon In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields. In the original case, the local field of interest was ''essentially'' the field of formal Lau ...
*
Puiseux expansion In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + ...
*
Branched covering In mathematics, a branched covering is a map that is almost a covering map, except on a small set. In topology In topology, a map is a ''branched covering'' if it is a covering map everywhere except for a nowhere dense set known as the branch set. ...


References

* *


External links

* {{planetmath_reference, urlname=SplittingAndRamificationInNumberFieldsAndGaloisExtensions, title=Splitting and ramification in number fields and Galois extensions Algebraic number theory Algebraic topology Complex analysis