Eisenstein Polynomial
   HOME
*





Eisenstein Polynomial
In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with rational coefficients. This criterion is not applicable to all polynomials with integer coefficients that are irreducible over the rational numbers, but it does allow in certain important cases for irreducibility to be proved with very little effort. It may apply either directly or after transformation of the original polynomial. This criterion is named after Gotthold Eisenstein. In the early 20th century, it was also known as the Schönemann–Eisenstein theorem because Theodor Schönemann was the first to publish it. Criterion Suppose we have the following polynomial with integer coefficients. : Q(x)=a_nx^n+a_x^+\cdots+a_1x+a_0 If there exists a prime number such that the following three conditions all apply: * divides each f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Slope
In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is used for slope, but its earliest use in English appears in O'Brien (1844) who wrote the equation of a straight line as and it can also be found in Todhunter (1888) who wrote it as "''y'' = ''mx'' + ''c''". Slope is calculated by finding the ratio of the "vertical change" to the "horizontal change" between (any) two distinct points on a line. Sometimes the ratio is expressed as a quotient ("rise over run"), giving the same number for every two distinct points on the same line. A line that is decreasing has a negative "rise". The line may be practical – as set by a road surveyor, or in a diagram that models a road or a roof either as a description or as a plan. The ''steepness'', incline, or grade of a line is measured by the absolute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive P-adic Valuation
In number theory, the valuation or -adic order of an integer is the exponent of the highest power of the prime number that divides . It is denoted \nu_p(n). Equivalently, \nu_p(n) is the exponent to which p appears in the prime factorization of n. The -adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers \mathbb, the completion of the rational numbers with respect to the p-adic absolute value results in the numbers \mathbb_p. Definition and properties Let be a prime number. Integers The -adic valuation of an integer n is defined to be : \nu_p(n)= \begin \mathrm\ & \text n \neq 0\\ \infty & \text n=0, \end where \mathbb denotes the set of natural numbers and m \mid n denotes divisibility of n by m. In particular, \nu_p is a function \nu_p \colon \mathbb \to \mathbb \cup\ . For example, \nu_2(-12) = 2, \nu_3(-12) = 1, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lower Convex Envelope
In mathematics, the lower convex envelope \breve f of a function f defined on an interval ,b/math> is defined at each point of the interval as the supremum of all convex functions that lie under that function, i.e. : \breve f (x) = \sup\. See also * Convex hull * Lower envelope In mathematics, the lower envelope or pointwise minimum of a finite set of functions is the pointwise minimum of the functions, the function whose value at every point is the minimum of the values of the functions in the given set. The concept of ... Convex analysis {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P-adic Number
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newton Polygon
In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields. In the original case, the local field of interest was ''essentially'' the field of formal Laurent series in the indeterminate ''X'', i.e. the field of fractions of the formal power series ring K X, over K, where K was the real number or complex number field. This is still of considerable utility with respect to Puiseux expansions. The Newton polygon is an effective device for understanding the leading terms aX^r of the power series expansion solutions to equations P(F(X)) = 0 where P is a polynomial with coefficients in K /math>, the polynomial ring; that is, implicitly defined algebraic functions. The exponents r here are certain rational numbers, depending on the branch chosen; and the solutions themselves are power series in K Y with Y = X^ for a denominator d corresponding to the branch. The Newton polygon gives an effective, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique Factorization Domain
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of prime elements (or irreducible elements), uniquely up to order and units. Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field. Unique factorization domains appear in the following chain of class inclusions: Definition Formally, a unique factorization domain is defined to be an integral domain ''R'' in which every non-zero element ''x'' of ''R'' can be written as a product (an empty product if ''x'' is a unit) of irreducible elements ''p''i of ''R'' and a uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss's Lemma (polynomial)
In algebra, Gauss's lemma, named after Carl Friedrich Gauss, is a statementThis theorem is called a lemma for historical reasons. about polynomials over the integers, or, more generally, over a unique factorization domain (that is, a ring that has a unique factorization property similar to the fundamental theorem of arithmetic). Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials. Gauss's lemma asserts that the product of two primitive polynomials is primitive (a polynomial with integer coefficients is ''primitive'' if it has 1 as a greatest common divisor of its coefficients). A corollary of Gauss's lemma, sometimes also called ''Gauss's lemma'', is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive polynomial has the same complete factorization over the integers and over the rational numbers. In the case of coefficients in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, all else is the work of man").The English translation is from Gray. In a footnote, Gray attributes the German quote to "Weber 1891/92, 19, quoting from a lecture of Kronecker's of 1886". Weber, Heinrich L. 1891–1892Kronecker''Jahresbericht der Deutschen Mathematiker-Vereinigung''
2:5-23. (The quote is on p. 19.) Kronecker was a student and lifelong friend of .


Biography

Leopold Kronecker was born ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disquisitiones Arithmeticae
The (Latin for "Arithmetical Investigations") is a textbook of number theory written in Latin by Carl Friedrich Gauss in 1798 when Gauss was 21 and first published in 1801 when he was 24. It is notable for having had a revolutionary impact on the field of number theory as it not only made the field truly rigorous and systematic but also paved the path for modern number theory. In this book Gauss brought together and reconciled results in number theory obtained by mathematicians such as Fermat, Euler, Lagrange, and Legendre and added many profound and original results of his own. Scope The ''Disquisitiones'' covers both elementary number theory and parts of the area of mathematics now called algebraic number theory. Gauss did not explicitly recognize the concept of a group, which is central to modern algebra, so he did not use this term. His own title for his subject was Higher Arithmetic. In his Preface to the ''Disquisitiones'', Gauss describes the scope of the book as follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lemniscate Of Bernoulli
In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points and , known as foci, at distance from each other as the locus of points so that . The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from , which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4. This lemniscate was first described in 1694 by Jakob Bernoulli as a modification of an ellipse, which is the locus of points for which the sum of the distances to each of two fixed ''focal points'' is a constant. A Cassini oval, by contrast, is the locus of points for which the ''product'' of these distances is constant. In the case where the curve passes through the point midway between the foci, the oval is a lemniscate of Bernoulli. This curve can be obtained as the inverse transform of a hyperbola, with the inversion circle centered at the center of the hyperbola (bisector o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]