The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a
multi-criteria decision analysis
Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings ...
method, which was originally developed by Ching-Lai Hwang and Yoon in 1981
with further developments by Yoon in 1987,
and Hwang, Lai and Liu in 1993.
TOPSIS is based on the concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution (PIS) and the longest geometric distance from the negative ideal solution (NIS). A dedicated book in the fuzzy context was published in 2021
Description
It is a method of compensatory aggregation that compares a set of alternatives, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion. The weights of the criteria in TOPSIS method can be calculated using
Ordinal Priority Approach,
Analytic hierarchy process
In the theory of decision making, the analytic hierarchy process (AHP), also analytical hierarchy process, is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Tho ...
, etc. An assumption of TOPSIS is that the criteria are
monotonically increasing or decreasing.
Normalisation is usually required as the parameters or criteria are often of incongruous dimensions in multi-criteria problems.
Compensatory methods such as TOPSIS allow trade-offs between criteria, where a poor result in one criterion can be negated by a good result in another criterion. This provides a more realistic form of modelling than non-compensatory methods, which include or exclude alternative solutions based on hard cut-offs.
An example of application on nuclear power plants is provided in.
TOPSIS method
The TOPSIS process is carried out as follows:
;Step 1: Create an evaluation matrix consisting of m alternatives and n criteria, with the intersection of each alternative and criteria given as
, we therefore have a matrix
.
;Step 2: The matrix
is then normalised to form the matrix
::
, using the normalisation method
::
;Step 3: Calculate the weighted normalised decision matrix
::
:where
so that
, and
is the original weight given to the indicator
;Step 4: Determine the worst alternative
and the best alternative
:
::
::
:where,
::
associated with the criteria having a positive impact, and
::
associated with the criteria having a negative impact.
;Step 5: Calculate the L
2-distance between the target alternative
and the worst condition
::
: and the distance between the alternative
and the best condition
::
:where
and
are L
2-norm distances from the target alternative
to the worst and best conditions, respectively.
;Step 6: Calculate the similarity to the worst condition:
::
::
if and only if the alternative solution has the best condition; and
::
if and only if the alternative solution has the worst condition.
; Step 7: Rank the alternatives according to
Normalisation
Two methods of normalisation that have been used to deal with incongruous criteria dimensions are linear normalisation and vector normalisation.
Linear normalisation can be calculated as in Step 2 of the TOPSIS process above. Vector normalisation was incorporated with the original development of the TOPSIS method,
and is calculated using the following formula:
:
In using vector normalisation, the non-linear distances between single dimension scores and ratios should produce smoother trade-offs.
Online tools
Decision Radar: A free online TOPSIS calculator written in
Python
Python may refer to:
Snakes
* Pythonidae, a family of nonvenomous snakes found in Africa, Asia, and Australia
** ''Python'' (genus), a genus of Pythonidae found in Africa and Asia
* Python (mythology), a mythical serpent
Computing
* Python (pro ...
.
*
References
{{Reflist
Decision analysis
Mathematical optimization
Multiple-criteria decision analysis
Utility